Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Optimization problems that involve topology opti- mization in scenarios with large scale outages, such as post- disaster restoration or public safety power shutoff planning, are very challenging to solve. Using simple power flow representa- tions such as DC power flow or network flow models results in low quality solutions which requires significantly higher- than-predicted load shed to become AC feasible. Recent work has shown that formulations based on the Second Order Cone (SOC) power flow formulation find very high quality solutions with low load shed, but the computational burden of these formulations remains a significant challenge. With the aim of reducing computational time while maintaining high solution quality, this work explores formulations which replace the conic constraints with a small number of linear cuts. The goal of this approach is not to find an exact power flow solution, but rather to identify good binary decisions, where the power flow can be resolved after the binary variables are fixed. We find that a simple reformulation of the Second Order Cone Optimal Power Shutoff problem can greatly improve the solution speed, but that a full linearization of the SOC voltage cone equation results in an overestimation of the amount of power that can be delivered to loads.more » « lessFree, publicly-accessible full text available June 30, 2026
- 
            Wildfires are an escalating environmental concern, closely linked to power grid infrastructure in two significant ways. High-voltage power lines can inadvertently spark wildfires when they contact vegetation, while wildfires originating elsewhere can damage the power grid, causing severe disruptions. This paper proposes a self-powered cyber-physical system framework with sensing, processing, and communication capabilities to enable early wildfire detection. The proposed framework first analyzes the probability of the presence of a wildfire using lightweight smoke detection models that can be deployed on embedded processors at the edge. Then, it identifies the Pareto-optimal configurations that co-optimize the wildfire detection probability and expected time to detect a wildfire under energy constraints. Experimental evaluations on Jetson Orin Nano and STM Nucleo boards show that the Pareto-optimal solutions achieve wildfire detection within 5–15 minutes while consuming 1.2–3.5x lower energy than transmitting images to the cloud.more » « lessFree, publicly-accessible full text available May 6, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            The Optimal Power Shutoff (OPS) problem is an optimization problem that makes power line de-energization decisions in order to reduce the risk of igniting a wildfire, while minimizing the load shed of customers. This problem, with DC linear power flow equations, has been used in many studies in recent years. However, using linear approximations for power flow when making decisions on the network topology is known to cause challenges with AC feasibility of the resulting network, as studied in the related contexts of optimal transmission switching or grid restoration planning. This paper explores the accuracy of the DC OPS formulation and the ability to recover an AC-feasible power flow solution after de-energization decisions are made. We also extend the OPS problem to include variants with the AC, Second-Order-Cone, and Network-Flow power flow equations, and compare them to the DC approximation with respect to solution quality and time. The results highlight that the DC approximation overestimates the amount of load that can be served, leading to poor de-energization decisions. The AC and SOC-based formulations are better, but prohibitively slow to solve for even modestly sized networks thus demonstrating the need for new solution methods with better trade-offs between computational time and solution quality.more » « less
- 
            NA (Ed.)Many remote powerlines do not have enough wildfire surveillance to enable preventive or mitigation measures, resulting in massive destruction in the incidence of wildfires hitting powerlines. This project seeks to build a multi-sensor-based embedded system that monitors wildfire-related weather conditions to assess the risk and alert the appropriate fire management team, via a wireless data transfer protocol in case of outbreaks. The design of the system will prove useful at power stations where other safety features are incorporated to reduce the occurrences of fires. The embedded system works based on a Hot-Dry-Windy index that monitors fire weather conditions that directly affect the spread of wildfires.more » « less
- 
            Continuous monitoring of areas nearby the electric grid is critical for preventing and early detection of devastating wildfires. Existing wildfire monitoring systems are intermittent and oblivious to local ambient risk factors, resulting in poor wildfire awareness. Ambient sensor suites deployed near the gridlines can increase the monitoring granularity and detection accuracy. However, these sensors must address two challenging and competing objectives at the same time. First, they must remain powered for years without manual maintenance due to their remote locations. Second, they must provide and transmit reliable information if and when a wildfire starts. The first objective requires aggressive energy savings and ambient energy harvesting, while the second requires continuous operation of a range of sensors. To the best of our knowledge, this paper presents the first self-sustained cyber-physical system that dynamically co-optimizes the wildfire detection accuracy and active time of sensors. The proposed approach employs reinforcement learning to train a policy that controls the sensor operations as a function of the environment (i.e., current sensor readings), harvested energy, and battery level. The proposed cyber-physical system is evaluated extensively using real-life temperature, wind, and solar energy harvesting datasets and an open-source wildfire simulator. In long-term (5 years) evaluations, the proposed framework achieves 89% uptime, which is 46% higher than a carefully tuned heuristic approach. At the same time, it averages a 2-minute initial response time, which is at least 2.5× faster than the same heuristic approach. Furthermore, the policy network consumes 0.6 mJ per day on the TI CC2652R microcontroller using TensorFlow Lite for Micro, which is negligible compared to the daily sensor suite energy consumption.more » « less
- 
            Fast and accurate knowledge of power flows and power injections is needed for a variety of applications in the electric grid. Phasor measurement units (PMUs) can be used to directly compute them at high speeds; however, a large number of PMUs will be needed for computing all the flows and injections. Similarly, if they are calculated from the outputs of a linear state estimator, then their accuracy will deteriorate due to the quadratic relationship between voltage and power. This paper employs machine learning to perform fast and accurate flow and injection estimation in power systems that are sparsely observed by PMUs. We train a deep neural network (DNN) to learn the mapping function between PMU measurements and power flows/injections. The relation between power flows and injections is incorporated into the DNN by adding a linear constraint to its loss function. The results obtained using the IEEE 118-bus system indicate that the proposed approach performs more accurate flow/injection estimation in severely unobservable power systems compared to other data-driven methods.more » « less
- 
            Electric power infrastructure has ignited several of the most destructive wildfires in recent history. Preemptive power shutoffs are an effective tool to mitigate the risk of ignitions from power lines, but at the same time can cause widespread power outages. This work proposes a mathematical optimization problem to help utilities decide where and when to implement these shutoffs, as well as how to most efficiently restore power once the wildfire risk is lower. Specifically, our model co-optimizes the power shutoff (considering both wildfire risk reduction and power outages) as well as the post-event restoration efforts given constraints related to inspection and energization of lines, and is implemented as a rolling horizon optimization problem that is resolved whenever new forecasts of load and wildfire risk become available. We demonstrate our method on the IEEE RTS-GMLC test case using real wildfire risk data and forecasts from US Geological Survey, and investigate the sensitivity of the results to the forecast quality, decision horizon and system restoration budget. The software implementation is available in the open source software package PowerModels Wildfire.jl.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
