While Volatile Organic Compounds (VOC) and ammonia have a place in our daily lives, their leakage into the environment is harmful to human health. In order to prevent and detect gaseous leaks of harmful VOCs, a cyber-physical system (CPS) comprised of ordinary people or first responders is proposed. This CPS uses small, low-cost sensors coupled to smart phones or mobile devices with the necessary computation and communication capabilities. The efficacy of such a CPS hinges on its ability to address technical challenges stemming from the fact that identically produced sensors may produce different results under the same conditions due to sensor drift, noise, or resolution errors. The proposed system makes use of time-varying signals produced by sensors to detect gas leaks. Sensors sample the gas vapor level in a continuous manner and time-varying sensor data is processed using deep neural networks. One of the neural networks (NN) is an energy efficient Additive Neural Network (AddNet) which can be implemented in host devices. The second NN is the discriminator of a GAN and the third a regular convolutional NN. AddNet produces comparable VOC gas leak detection results to regular convolutional networks while reducing area requirements by two thirds. 
                        more » 
                        « less   
                    
                            
                            A Self-Sustained CPS Design for Reliable Wildfire Monitoring
                        
                    
    
            Continuous monitoring of areas nearby the electric grid is critical for preventing and early detection of devastating wildfires. Existing wildfire monitoring systems are intermittent and oblivious to local ambient risk factors, resulting in poor wildfire awareness. Ambient sensor suites deployed near the gridlines can increase the monitoring granularity and detection accuracy. However, these sensors must address two challenging and competing objectives at the same time. First, they must remain powered for years without manual maintenance due to their remote locations. Second, they must provide and transmit reliable information if and when a wildfire starts. The first objective requires aggressive energy savings and ambient energy harvesting, while the second requires continuous operation of a range of sensors. To the best of our knowledge, this paper presents the first self-sustained cyber-physical system that dynamically co-optimizes the wildfire detection accuracy and active time of sensors. The proposed approach employs reinforcement learning to train a policy that controls the sensor operations as a function of the environment (i.e., current sensor readings), harvested energy, and battery level. The proposed cyber-physical system is evaluated extensively using real-life temperature, wind, and solar energy harvesting datasets and an open-source wildfire simulator. In long-term (5 years) evaluations, the proposed framework achieves 89% uptime, which is 46% higher than a carefully tuned heuristic approach. At the same time, it averages a 2-minute initial response time, which is at least 2.5× faster than the same heuristic approach. Furthermore, the policy network consumes 0.6 mJ per day on the TI CC2652R microcontroller using TensorFlow Lite for Micro, which is negligible compared to the daily sensor suite energy consumption. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10537763
- Publisher / Repository:
- ACM Digital Library
- Date Published:
- Journal Name:
- ACM Transactions on Embedded Computing Systems
- Volume:
- 22
- Issue:
- 5s
- ISSN:
- 1539-9087
- Page Range / eLocation ID:
- 1 to 23
- Subject(s) / Keyword(s):
- Computing methodologies → Reinforcement learning • Computer systems organi- zation → Embedded and cyber-physical systems Wildfire monitoring, self-sustainable, energy harvesting, edge device, IoT, resource management, decision making, sensing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Wearable internet of things (IoT) devices are becoming popular due to their small form factor and low cost. Potential applications include human health and activity monitoring by embedding sensors such as accelerometer, gyroscope, and heart rate sensor. However, these devices have severely limited battery capacity, which requires frequent recharging. Harvesting ambient energy and optimal energy allocation can make wearable IoT devices practical by eliminating the charging requirement. This paper presents a near-optimal runtime energy management technique by considering the harvested energy. The proposed solution maximizes the performance of the wearable device under minimum energy constraints. We show that the results of the proposed algorithm are, on average, within 3% of the optimal solution computed offline.more » « less
- 
            null (Ed.)There is an increasing demand for performing machine learning tasks, such as human activity recognition (HAR) on emerging ultra-low-power internet of things (IoT) platforms. Recent works show substantial efficiency boosts from performing inference tasks directly on the IoT nodes rather than merely transmitting raw sensor data. However, the computation and power demands of deep neural network (DNN) based inference pose significant challenges when executed on the nodes of an energy-harvesting wireless sensor network (EH-WSN). Moreover, managing inferences requiring responses from multiple energy-harvesting nodes imposes challenges at the system level in addition to the constraints at each node. This paper presents a novel scheduling policy along with an adaptive ensemble learner to efficiently perform HAR on a distributed energy-harvesting body area network. Our proposed policy, Origin, strategically ensures efficient and accurate individual inference execution at each sensor node by using a novel activity-aware scheduling approach. It also leverages the continuous nature of human activity when coordinating and aggregating results from all the sensor nodes to improve final classification accuracy. Further, Origin proposes an adaptive ensemble learner to personalize the optimizations based on each individual user. Experimental results using two different HAR data-sets show Origin, while running on harvested energy, to be at least 2.5% more accurate than a classical battery-powered energy aware HAR classifier continuously operating at the same average power.more » « less
- 
            Wildfires are an escalating environmental concern, closely linked to power grid infrastructure in two significant ways. High-voltage power lines can inadvertently spark wildfires when they contact vegetation, while wildfires originating elsewhere can damage the power grid, causing severe disruptions. This paper proposes a self-powered cyber-physical system framework with sensing, processing, and communication capabilities to enable early wildfire detection. The proposed framework first analyzes the probability of the presence of a wildfire using lightweight smoke detection models that can be deployed on embedded processors at the edge. Then, it identifies the Pareto-optimal configurations that co-optimize the wildfire detection probability and expected time to detect a wildfire under energy constraints. Experimental evaluations on Jetson Orin Nano and STM Nucleo boards show that the Pareto-optimal solutions achieve wildfire detection within 5–15 minutes while consuming 1.2–3.5x lower energy than transmitting images to the cloud.more » « less
- 
            Battery-free sensing devices harvest energy from their surrounding environment to perform sensing, computation, and communication. This enables previously impossible applications in the Internet-of-Things. A core challenge for these devices is maintaining usefulness despite erratic, random or irregular energy availability; which causes inconsistent execution, loss of service and power failures. Adapting execution (degrading or upgrading) seems promising as a way to stave off power failures, meet deadlines, or increase throughput. However, because of constrained resources and limited local information, it is a challenge to decide when would be the best time to adapt, and how exactly to adapt execution. In this paper, we systematically explore the fundamental mechanisms of energy-aware adaptation, and propose heuristic adaptation as a method for modulating the performance of tasks to enable higher sensor coverage, completion rates, or throughput, depending on the application. We build a task based adaptive runtime system for intermittently powered sensors embodying this concept. We complement this runtime with a user facing simulator that enables programmers to conceptualize the tradeoffs they make when choosing what tasks to adapt, and how, relative to real world energy harvesting environment traces. While we target battery-free, intermittently powered sensors, we see general application to all energy harvesting devices. We explore heuristic adaptation with varied energy harvesting modalities and diverse applications: machine learning, activity recognition, and greenhouse monitoring, and find that the adaptive version of our ML app performs up to 46% more classifications with only a 5% drop in accuracy; the activity recognition app captures 76% more classifications with only nominal down-sampling; and find that heuristic adaptation leads to higher throughput versus non-adaptive in all cases.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    