skip to main content


Search for: All records

Award ID contains: 2141017

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nanoelectrochemistry allows for the investigation of the interaction of per‐ and polyfluoroalkyl substances (PFASs) with silver nanoparticles (AgNPs) and the elucidation of the binding behaviour of PFASs to nanoscale surfaces with high sensitivity. Mechanistic studies supported by single particle collision electrochemistry (SPCE), spectroscopic and density functional theory (DFT) calculations indicate the capability of polyfluorooctane sulfonic acid (PFOS), a representative PFAS, to selectively bind and induce aggregation of AgNPs. Single‐particle measurements provide identification of the “discrete” AgNPs agglomeration (e.g. 2–3 NPs) formed through the inter‐particles F−F interactions and the selective replacement of the citrate stabilizer by the sulfonate of the PFOS. Such interactions are characteristic only for long chain PFAS (‐SO3) providing a means to selectively identify these substances down to ppt levels. Measuring and understanding the interactions of PFAS at nanoscale surfaces are crucial for designing ultrasensitive methods for detection and for modelling and predicting their interaction in the environment.

     
    more » « less
  2. Abstract

    The presence of contaminants of emerging concerns (CECs) such as pharmaceuticals and personal care products, endocrine disrupting compounds (EDCs), per/poly‐fluorinated substances (PFAS), pesticides, and nanomaterials poses significant challenges to the environment and human health. This review discusses the current status of electrochemical sensing methods and their potential as low‐cost analytical platforms for the detection and characterization of emerging contaminants. Recent developments in advanced materials and fabrication techniques such as electrophoretic deposition, layer‐by‐layer deposition, roll‐to‐roll and 3D printing techniques, and the scalable manufacturing of low‐cost portable electrochemical devices are discussed. Examples of detection mechanisms, electrode modification procedures, device configuration, and their performance along with recent developments in fundamental electrochemistry, particularly nanoimpact methods, are provided to demonstrate the capabilities of these methods for the environmental monitoring of CECs. Finally, a critical discussion of future research needs, detection challenges, and opportunities is provided to demonstrate how electrochemistry can be used to advance field monitoring of these chemicals. These methods can be used as complementary or alternative methods to the currently used laboratory‐based analytical instrumentation to facilitate large‐scale studies and manage risks associated with the presence of CECs in the environment and other matrices.

     
    more » « less
  3. Free, publicly-accessible full text available December 25, 2024
  4. Heavy metal contamination is one of the leading causes of water pollution, with known adverse effects on human health and the environment. This work demonstrates a novel custom-made 3D printable eco-friendly hydrogel and fabrication process that produces stable biocompatible adsorbents with the ability to capture and remove heavy metals from aqueous environments quickly and economically. The 3D printable ink contains alginate, gelatin, and polyethyleneimine (PEI), which binds heavy metals through primary and secondary amine side chains favoring heavy metal adsorption. The ink's rheological properties are optimized to create mechanically stable constructs, in the form of 3D-printed tablets, fabricated entirely by printing. The optimized tablets have high porosity and accessible surface area with multiple binding sites for heavy metal ion adsorption while the printing process enables rapid and affordable production with the potential for scale-up. The results demonstrate the contribution of hydrogel composition and rheology in determining the printability, stability, and heavy metal binding characteristics of the hydrogel, and indicate the critical role of the PEI in increasing stability of the printed construct, in addition to its metal binding properties. The highest removal capacity was obtained for copper, followed by cadmium, cobalt, and nickel ions. In the optimized formulation, each hydrogel tablet removed 60% from 100 ppm copper in 5 h and up to 98% in 18 h. For more concentrated solutions (1000 ppm), ∼25% of copper was removed in 18 h. The printed tablets are stable, robust, and can be produced in a single simple step from inexpensive biomaterials. The ink's tunability, excellent printability, and stability offer a universally applicable procedure for creating hydrogel-based structures for environmental remediation. These unique capabilities open new avenues for manufacturing tailor-made constructs with integrated functionality for water treatment and environmental applications. 
    more » « less