Abstract Herein, we describe a 3D printable hydrogel that is capable of removing toxic metal pollutants from aqueous solution. To achieve this, shear‐thinning hydrogels were prepared by blending chitosan with diacrylated Pluronic F‐127 which allows for UV curing after printing. Several hydrogel compositions were tested for their ability to absorb common metal pollutants such as lead, copper, cadmium and mercury, as well as for their printability. These hydrogels displayed excellent metal adsorption with some examples capable of up to 95% metal removal within 30 min. We show that 3D printed hydrogel structures that would be difficult to fabricate by conventional manufacturing methods can adsorb metal ions significantly faster than solid objects, owing to their higher accessible surface areas. © 2019 Society of Chemical Industry
more »
« less
3D printable polyethyleneimine based hydrogel adsorbents for heavy metal ions removal
Heavy metal contamination is one of the leading causes of water pollution, with known adverse effects on human health and the environment. This work demonstrates a novel custom-made 3D printable eco-friendly hydrogel and fabrication process that produces stable biocompatible adsorbents with the ability to capture and remove heavy metals from aqueous environments quickly and economically. The 3D printable ink contains alginate, gelatin, and polyethyleneimine (PEI), which binds heavy metals through primary and secondary amine side chains favoring heavy metal adsorption. The ink's rheological properties are optimized to create mechanically stable constructs, in the form of 3D-printed tablets, fabricated entirely by printing. The optimized tablets have high porosity and accessible surface area with multiple binding sites for heavy metal ion adsorption while the printing process enables rapid and affordable production with the potential for scale-up. The results demonstrate the contribution of hydrogel composition and rheology in determining the printability, stability, and heavy metal binding characteristics of the hydrogel, and indicate the critical role of the PEI in increasing stability of the printed construct, in addition to its metal binding properties. The highest removal capacity was obtained for copper, followed by cadmium, cobalt, and nickel ions. In the optimized formulation, each hydrogel tablet removed 60% from 100 ppm copper in 5 h and up to 98% in 18 h. For more concentrated solutions (1000 ppm), ∼25% of copper was removed in 18 h. The printed tablets are stable, robust, and can be produced in a single simple step from inexpensive biomaterials. The ink's tunability, excellent printability, and stability offer a universally applicable procedure for creating hydrogel-based structures for environmental remediation. These unique capabilities open new avenues for manufacturing tailor-made constructs with integrated functionality for water treatment and environmental applications.
more »
« less
- Award ID(s):
- 2141017
- PAR ID:
- 10388587
- Date Published:
- Journal Name:
- Environmental Science: Advances
- Volume:
- 1
- Issue:
- 4
- ISSN:
- 2754-7000
- Page Range / eLocation ID:
- 443 to 455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study demonstrates the potential application of polyethyleneimine (PEI)-modified quantum dots for sensing heavy metals, specifically copper ions, in aqueous matrices. Quantum dots were synthesized in aqueous phase, revealing a spherical morphology, a size of less than 5 nm, and a face-centered cubic crystalline structure. The presence of PEI on the quantum dots' surface significantly enhanced their photoluminescence within the range of 400 nm to 650 nm. To assess the sensor capabilities of PEI-capped quantum dots, two copper precursors (CuSO4 and CuNO3) were utilized at concentrations ranging from 0 ppm to 38 ppm. A systematic decrease in fluorescence intensity with increasing copper concentration was observed, establishing a quantitative relationship. These findings underscore the potential of PEI-modified quantum dots as efficient and selective sensors for copper ions. The concentration-dependent response in fluorescence intensity reflects the sensitivity of the system, suggesting promising applications in the field of heavy metal detection.more » « less
-
null (Ed.)Graphene-based 3D macroscopic aerogels with their hierarchical porous structures and mechanical strength have been widely explored for removing contaminants from water. However, their large-scale manufacturing and application in various water treatment processes are limited by their scalability. In this study, we report a proof-of-concept direct ink writing (DIW) 3D printing technique and subsequent freeze-drying to prepare graphene-biopolymer aerogels for water treatment. To provide appropriate rheology for DIW printability, two bio-inspired polymers, polydopamine (PDA) and bovine serum albumin (BSA), were added to the graphene-based ink. The biopolymers also contributed to the contaminant removal capacity of the resultant graphene-polydopamine-bovine serum albumin (G-PDA-BSA) aerogel. The physicochemical properties of the aerogel were thoroughly characterized from the nano- to macroscale. The 3D printed aerogel exhibited excellent water contaminant removal performance for heavy metals (Cr( vi ), Pb( ii )), organic dyes (cationic methylene blue and anionic Evans blue), and organic solvents ( n -hexane, n -heptane, and toluene) in batch adsorption studies. The electrostatic interaction dominated the removal of heavy metals and dyes while the hydrophobic interaction dominated the removal of organic solvents from water. Moreover, the aerogel showed superb regeneration and reuse potential. The aerogel removed 100% organic solvents over 10 cycles of regeneration and reuse; additionally, the removal efficiencies for methylene blue decreased by 2–20% after the third cycle. The fit-for-design 3D printed aerogel was also effectively used as a bottle-cap flow-through filter for dye removal. The potential and vision of the 3D printing approach for graphene-based water treatment presented here can be extended to other functional nanomaterials, can enable shape-specific applications of fit-for-purpose adsorbents/reactors and point-of-use filters, and can materialize the large-scale manufacturing of nano-enabled water treatment devices and technologies.more » « less
-
Abstract Three-dimensional (3D) printing of metal components through powder bed fusion, material extrusion, and vat photopolymerization, has attracted interest continuously. Particularly, extrusion-based and photopolymerization-based processes employ metal particle-reinforced polymer matrix composites (PMCs) as raw materials. However, the resolution for extrusion-based printing is limited by the speed-accuracy tradeoff. In contrast, photopolymerization-based processes can significantly improve the printing resolution, but the filler loading of the PMC is typically low due to the critical requirement on raw materials’ rheological properties. Herein, we develop a new metal 3D printing strategy by utilizing micro-continuous liquid interface printing (μCLIP) to print PMC resins comprising nanoporous copper (NP-Cu) powders. By balancing the need for higher filler loading and the requirements on rheological properties to enable printability for the μCLIP, the compositions of PMC resin were optimized. In detail, the concentration of the NP-Cu powders in the resins can reach up to 40 wt% without sacrificing the printability and printing speed (10 μm·s−1). After sintering, 3D copper structures with microscale features (470 ± 140 μm in diameter) manifesting an average resistivity of 150 kΩ·mm can be realized. In summary, this new strategy potentially benefits the rapid prototyping of metal components with higher resolution at faster speeds.more » « less
-
The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host–guest inclusion, metal–ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.more » « less
An official website of the United States government

