skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2142977

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Research shows that user traits can modulate the use of visualization systems and have a measurable influence on users' accuracy, speed, and attention when performing visual analysis. This highlights the importance of user‐adaptive visualization that can modify themselves to the characteristics and preferences of the user. However, there are very few such visualization systems, as creating them requires broad knowledge from various sub‐domains of the visualization community. A user‐adaptive system must consider which user traits they adapt to, their adaptation logic and the types of interventions they support. In this STAR, we survey a broad space of existing literature and consolidate them to structure the process of creating user‐adaptive visualizations into five components: Capture ⒶInputfrom the user and any relevant peripheral information. Perform computational ⒷUser Modellingwith this input to construct a ⒸUser Representation. Employ ⒹAdaptation Assignmentlogic to identify when and how to introduce ⒺInterventions. Our novel taxonomy provides a road map for work in this area, describing the rich space of current approaches and highlighting open areas for future work. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available May 31, 2026
  3. Free, publicly-accessible full text available April 25, 2026
  4. Free, publicly-accessible full text available April 25, 2026