skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Raman Thermometry for Temperature Assessment of Inorganic Transformations During Microwave Heating
ABSTRACT Microwave heating is an intriguing method for the synthesis of inorganic solids offering a variety of advantages over conventional furnace heating, such as fast heating and cooling rates as well as volumetric and selective heating of precursors. However, there are many open questions regarding this “black‐box” process, and insights into the effect of microwave radiation on different types of solids are generally missing. In situ Raman spectroscopy is a powerful technique to unravel chemical transformations and identify intermediate species during microwave solid‐state syntheses. A major challenge is the temperature measurement under microwave conditions because (metallic) thermocouples cannot be used and optical pyrometry has significant drawbacks. In contrast, Raman thermometry is a viable method that relies on the temperature‐induced shift of Raman signals. Here, we use this method to estimate the temperature during microwave heating of a model system (titania) that undergoes a phase transition at temperatures >800°C. The estimation is derived from a flexible double exponential calibration function applied to Raman spectroscopic peak shifts in the temperature‐resolved furnace heating data, which was found to describe two titania modes (one anatase and one rutile) extremely well. Based on a detailed error and uncertainty analysis, we suggest options to further optimize Raman thermometry for use in high‐temperature microwave heating conditions.  more » « less
Award ID(s):
2143982
PAR ID:
10569639
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Raman Spectroscopy
Date Published:
Journal Name:
Journal of Raman Spectroscopy
Volume:
56
Issue:
1
ISSN:
0377-0486
Page Range / eLocation ID:
49 to 56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microwave heating methods offer unique advantages in preparations of inorganic solids due to the high heating rates, potentially selective heating, and time/energy reductions. Understanding of these enhancements as well as involved mechanisms is poor due to the lack of available and easily applicable in situ monitoring methods, particularly for samples in the solid state. Existing in situ studies typically rely on access to beamline facilities as well as custom‐built microwave systems, which is in the best case inconvenient and in the worst case not achievable. In situ Raman spectroscopy is an ideal technique as it provides rapid and unambiguous phase identification by a noncontact method. Further, the instrument components are simple and compact, facilitating use in the typical synthetic laboratory. Only a few reports on using Raman spectroscopy for in situ measurements during microwave heating exist, and they all utilize specialized custom reactor setups. In this work, a new Raman measurement system designed to observe inorganic transformations in situ that is readily deployable in a standard, commercially available laboratory scale microwave reactor is described. As a simple demonstration, the anatase‐to‐rutile phase transition in TiO2is monitored under both microwave and conventional furnace heating. The excellent time resolution achieved demonstrates the utility of the system in understanding microwave‐assisted methods for the preparation of inorganic compounds. The simplicity will encourage integration by the non‐specialist to understand microwave heating for synthetic preparations and promote wider application of the technique. 
    more » « less
  2. null (Ed.)
    Abstract Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since the high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to submicrosecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns. 
    more » « less
  3. A one-dimensional (1D) thermometry using oxygen-tagging resonantly ionized photoelectron thermometry (O2RIPT) was employed to investigate thermal gradients within a Mach 4 Ludwieg tube. The Ludwieg tube is pulsed with a test duration of approximately 100 ms, providing a cold supersonic flow at Mach 4 ideal for studying aerothermal effects. This study focused on measuring freestream temperatures, capturing shock-induced heating behind a detached bow shock from a blunt cylinder, and resolving sharp temperature variations across a bow shock generated by a cylinder. The O2RIPT technique produced strong emission signals extending approximately 4 cm long, demonstrating its capability for precise temperature measurements in high-speed wind tunnel environments. The results confirm that O2RIPT is well-suited for applications in large-scale aerodynamic testing facilities, particularly in regions with strong compression effects, enabling the resolution of sharp thermal gradients. This method presents a promising solution for thermometry in dynamic flow conditions relevant to various experimental ground-test facilities. 
    more » « less
  4. Thermal emission is the process by which all objects at nonzero temperatures emit light and is well described by the Planck, Kirchhoff, and Stefan–Boltzmann laws. For most solids, the thermally emitted power increases monotonically with temperature in a one-to-one relationship that enables applications such as infrared imaging and noncontact thermometry. Here, we demonstrated ultrathin thermal emitters that violate this one-to-one relationship via the use of samarium nickel oxide (SmNiO3), a strongly correlated quantum material that undergoes a fully reversible, temperature-driven solid-state phase transition. The smooth and hysteresis-free nature of this unique insulator-to-metal phase transition enabled us to engineer the temperature dependence of emissivity to precisely cancel out the intrinsic blackbody profile described by the Stefan–Boltzmann law, for both heating and cooling. Our design results in temperature-independent thermally emitted power within the long-wave atmospheric transparency window (wavelengths of 8 to 14 µm), across a broad temperature range of ∼30 °C, centered around ∼120 °C. The ability to decouple temperature and thermal emission opens a gateway for controlling the visibility of objects to infrared cameras and, more broadly, opportunities for quantum materials in controlling heat transfer. 
    more » « less
  5. Abstract The coordinated, cooperative use of microwave heating with conventional heating can provide advantages in chemical synthesis. Here, heterogeneous mixtures comprising ionic, highly microwave‐absorbing organic reagents and nearly microwave‐transparent arene solvents are heated conventionally and/or with microwaves, resulting in faster and, in some cases, higher yielding reactions when the two heating methods are applied cooperatively as compared to either method independently. Control experiments in more polar arene solvents show no advantage of cooperative heating, consistent with selective microwave heating phenomena. The experiments are facilitated by reactor technology that regulates internal reaction temperature and coordinates the application of conventional and microwave heating. The positive outcomes in this initial exploratory system suggest that cooperative heating can offer benefits in other systems designed for selective microwave heating. 
    more » « less