skip to main content


Search for: All records

Award ID contains: 2145295

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 14, 2024
  2. Free, publicly-accessible full text available May 8, 2024
  3. Modern cluster managers like Borg, Omega and Kubernetes rely on the state-reconciliation principle to be highly resilient and extensible. In these systems, all cluster-management logic is embedded in a loosely coupled collection of microservices called controllers. Each controller independently observes the current cluster state and issues corrective actions to converge the cluster to a desired state. However, the complex distributed nature of the overall system makes it hard to build reliable and correct controllers – we find that controllers face myriad reliability issues that lead to severe consequences like data loss, security vulnerabilities, and resource leaks. We present Sieve, the first automatic reliability-testing tool for cluster-management controllers. Sieve drives controllers to their potentially buggy corners by systematically and extensively perturbing the controller’s view of the current cluster state in ways it is expected to tolerate. It then compares the cluster state’s evolution with and without perturbations to detect safety and liveness issues. Sieve’s design is powered by a fundamental opportunity in state-reconciliation systems – these systems are based on state-centric interfaces between the controllers and the cluster state; such interfaces are highly transparent and thereby enable fully-automated reliability testing. To date, Sieve has efficiently found 46 serious safety and liveness bugs (35 confirmed and 22 fixed) in ten popular controllers with a low false-positive rate of 3.5%. 
    more » « less