Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a general Bernoulli Gaussian scale mixture based approach for modeling priors that can represent a large class of random signals. For inference, we introduce belief propagation (BP) to multi-snapshot signal recovery based on the minimum mean square error estimation criteria. Our method relies on intra-snapshot messages that update the signal vector for each snapshot and inter-snapshot messages that share probabilistic information related to the common sparsity structure across snapshots. Despite the very general model, our BP method can efficiently compute accurate approximations of marginal posterior PDFs. Preliminary numerical results illustrate the superior convergence rate and improved performance of the proposed method compared to approaches based on sparse Bayesian learning (SBL).more » « lessFree, publicly-accessible full text available April 11, 2026
-
Multiobject tracking (MOT) is an important task in robotics, autonomous driving, and maritime surveillance. Traditional work on MOT is model-based and aims to establish algorithms in the framework of sequential Bayesian estimation. More recent methods are fully data-driven and rely on the train- ing of neural networks. The two approaches have demonstrated advantages in certain scenarios. In particular, in problems where plenty of labeled data for the training of neural networks is available, data-driven MOT tends to have advantages compared to traditional methods. A natural thought is whether a general and efficient framework can integrate the two approaches. This paper advances a recently introduced hybrid model-based and data-driven method called neural-enhanced belief propagation (NEBP). Compared to existing work on NEBP for MOT, it introduces a novel neural architecture that can improve data association and new object initialization, two critical aspects of MOT. The proposed tracking method is leading the nuScenes LiDAR-only tracking challenge at the time of submission of this paper.more » « less
-
In many multiobject tracking applications, including radar and sonar tracking, after prefiltering the received signal, measurement data is typically structured in cells. The cells, e.g., represent different range and bearing values. However, conventional multiobject tracking methods use so-called point measurements. Point measurements are provided by a preprocessing stage that applies a threshold or detector and breaks up the cell’s structure by converting cell indexes into, e.g., range and bearing measurements. We here propose a Bayesian multiobject tracking method that processes measurements that have been thresholded but are still cell-structured. We first derive a likelihood function that systematically incorporates an adjustable detection threshold which makes it possible to control the number of cell measurements. We then propose a Poisson Multi-Bernoulli (PMB) filter based on the likelihood function for cell measurements. Furthermore, we establish a link to the conventional point measurement model by deriving the likelihood function for point measurements with amplitude information (AM) and discuss the PMB filter that uses point measurements with AM. Our numerical results demonstrate the advantages of the proposed PMB filter for thresholded cell measurements compared to the conventional PMB filter for point measurements with and without AM.more » « less
-
Passive monitoring of acoustic or radio sources has important applications in modern convenience, public safety, and surveillance. A key task in passive monitoring is multiobject tracking (MOT). This paper presents a Bayesian method for multisensor MOT for challenging tracking problems where the object states are high-dimensional, and the measurements follow a nonlinear model. Our method is developed in the framework of factor graphs and the sum-product algorithm (SPA) and implemented using random samples or “particles”. The multimodal probability density functions provided by the SPA are effectively represented by a Gaussian mixture model (GMM). To perform the operations of the SPA with improved sample efficiency, we make use of particle flow (PFL). Here, particles are migrated towards regions of high likelihood based on the solution of a partial differential equation. This makes it possible to obtain good object detection and tracking performance even in challenging multisensor MOT scenarios with single sensor measurements that have a lower dimension than the object positions. We perform a numerical evaluation in a passive acoustic monitoring scenario where multiple sources are tracked in 3-D from 1-D time difference-of-arrival (TDOA) measurements provided by pairs of hydrophones. Our numerical results, obtained by processing synthetic and real data, demonstrate favorable detection and estimation accuracy compared to state-of-the-art reference techniques.more » « less
-
Passive acoustic monitoring is widely used for detection and localization of marine mammals. Typically, pressure sensors are used, although several studies utilized acoustic vector sensors (AVSs), that measure acoustic pressure and particle velocity and can estimate azimuths to acoustic sources. The AVSs can localize sources using a reduced number of sensors and do not require precise time synchronization between sensors. However, when multiple animals are calling concurrently, automated tracking of individual sources still poses a challenge, and manual methods are typically employed to link together sequences of measurements from a given source. This paper extends the method previously reported by Tenorio-Hallé, Thode, Lammers, Conrad, and Kim [J. Acoust. Soc. Am. 151(1), 126–137 (2022)] by employing and comparing two fully-automated approaches for azimuthal tracking based on the AVS data. One approach is based on random finite set statistics and the other on message passing algorithms, but both approaches utilize the underlying Bayesian statistical framework. The proposed methods are tested on several days of AVS data obtained off the coast of Maui and results show that both approaches successfully and efficiently track multiple singing humpback whales. The proposed methods thus made it possible to develop a fully-automated AVS tracking approach applicable to all species of baleen whales.more » « less
An official website of the United States government
