skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automating multi-target tracking of singing humpback whales recorded with vector sensors
Passive acoustic monitoring is widely used for detection and localization of marine mammals. Typically, pressure sensors are used, although several studies utilized acoustic vector sensors (AVSs), that measure acoustic pressure and particle velocity and can estimate azimuths to acoustic sources. The AVSs can localize sources using a reduced number of sensors and do not require precise time synchronization between sensors. However, when multiple animals are calling concurrently, automated tracking of individual sources still poses a challenge, and manual methods are typically employed to link together sequences of measurements from a given source. This paper extends the method previously reported by Tenorio-Hallé, Thode, Lammers, Conrad, and Kim [J. Acoust. Soc. Am. 151(1), 126–137 (2022)] by employing and comparing two fully-automated approaches for azimuthal tracking based on the AVS data. One approach is based on random finite set statistics and the other on message passing algorithms, but both approaches utilize the underlying Bayesian statistical framework. The proposed methods are tested on several days of AVS data obtained off the coast of Maui and results show that both approaches successfully and efficiently track multiple singing humpback whales. The proposed methods thus made it possible to develop a fully-automated AVS tracking approach applicable to all species of baleen whales.  more » « less
Award ID(s):
2146261
PAR ID:
10496609
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ASA
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
154
Issue:
4
ISSN:
0001-4966
Page Range / eLocation ID:
2579 to 2593
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundIn ecosystems influenced by strong seasonal variation in insolation, the fitness of diverse taxa depends on seasonal movements to track resources along latitudinal or elevational gradients. Deep pelagic ecosystems, where sunlight is extremely limited, represent Earth’s largest habitable space and yet ecosystem phenology and effective animal movement strategies in these systems are little understood. Sperm whales (Physeter macrocephalus) provide a valuable acoustic window into this world: the echolocation clicks they produce while foraging in the deep sea are the loudest known biological sounds on Earth and convey detailed information about their behavior. MethodsWe analyze seven years of continuous passive acoustic observations from the Central California Current System, using automated methods to identify both presence and demographic information from sperm whale echolocation clicks. By integrating empirical results with individual-level movement simulations, we test hypotheses about the movement strategies underlying sperm whales’ long-distance movements in the Northeast Pacific. ResultsWe detect foraging sperm whales of all demographic groups year-round in the Central California Current System, but also identify significant seasonality in frequency of presence. Among several previously hypothesized movement strategies for this population, empirical acoustic observations most closely match simulated results from a population undertaking a “seasonal resource-tracking migration”, in which individuals move to track moderate seasonal-latitudinal variation in resource availability. DiscussionOur findings provide evidence for seasonal movements in this cryptic top predator of the deep sea. We posit that these seasonal movements are likely driven by tracking of deep-sea resources, based on several lines of evidence: (1) seasonal-latitudinal patterns in foraging sperm whale detection across the Northeast Pacific; (2) lack of demographic variation in seasonality of presence; and (3) the match between simulations of seasonal resource-tracking migration and empirical results. We show that sperm whales likely track oceanographic seasonality in a manner similar to many surface ocean predators, but with dampened seasonal-latitudinal movement patterns. These findings shed light on the drivers of sperm whales’ long-distance movements and the shrouded phenology of the deep-sea ecosystems in which they forage. 
    more » « less
  2. Abstract As human and automated sensor networks collect increasingly massive volumes of animal observations, new opportunities have arisen to use these data to infer or track species movements. Sources of broad scale occurrence datasets include crowdsourced databases, such as eBird and iNaturalist, weather surveillance radars, and passive automated sensors including acoustic monitoring units and camera trap networks. Such data resources represent static observations, typically at the species level, at a given location. Nonetheless, by combining multiple observations across many locations and times it is possible to infer spatially continuous population-level movements. Population-level movement characterizes the aggregated movement of individuals comprising a population, such as range contractions, expansions, climate tracking, or migration, that can result from physical, behavioral, or demographic processes. A desire to model population movements from such forms of occurrence data has led to an evolving field that has created new analytical and statistical approaches that can account for spatial and temporal sampling bias in the observations. The insights generated from the growth of population-level movement research can complement the insights from focal tracking studies, and elucidate mechanisms driving changes in population distributions at potentially larger spatial and temporal scales. This review will summarize current broad-scale occurrence datasets, discuss the latest approaches for utilizing them in population-level movement analyses, and highlight studies where such analyses have provided ecological insights. We outline the conceptual approaches and common methodological steps to infer movements from spatially distributed occurrence data that currently exist for terrestrial animals, though similar approaches may be applicable to plants, freshwater, or marine organisms. 
    more » « less
  3. The operational safety of Automated Driving System (ADS)-Operated Vehicles (AVs) are a rising concern with the deployment of AVs as prototypes being tested and also in commercial deployment. The robustness of safety evaluation systems is essential in determining the operational safety of AVs as they interact with human-driven vehicles. Extending upon earlier works of the Institute of Automated Mobility (IAM) that have explored the Operational Safety Assessment (OSA) metrics and infrastructure-based safety monitoring systems, in this work, we compare the performance of an infrastructure-based Light Detection And Ranging (LIDAR) system to an onboard vehicle-based LIDAR system in testing at the Maricopa County Department of Transportation SMARTDrive testbed in Anthem, Arizona. The sensor modalities are located in infrastructure and onboard the test vehicles, including LIDAR, cameras, a real-time differential GPS, and a drone with a camera. Bespoke localization and tracking algorithms are created for the LIDAR and cameras. In total, there are 26 different scenarios of the test vehicles navigating the testbed intersection; for this work, we are only considering car following scenarios. The LIDAR data collected from the infrastructure-based and onboard vehicle-based sensors system are used to perform object detection and multi-target tracking to estimate the velocity and position information of the test vehicles and use these values to compute OSA metrics. The comparison of the performance of the two systems involves the localization and tracking errors in calculating the position and the velocity of the subject vehicle, with the real-time differential GPS data serving as ground truth for velocity comparison and tracking results from the drone for OSA metrics comparison. 
    more » « less
  4. Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning–based routing (autonomy module) and synthetic aperture radar–based very high frequency (VHF) signal–based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an “engineered whale”—a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists. 
    more » « less
  5. null (Ed.)
    Recent decades have witnessed the breakthrough of autonomous vehicles (AVs), and the sensing capabilities of AVs have been dramatically improved. Various sensors installed on AVs will be collecting massive data and perceiving the surrounding traffic continuously. In fact, a fleet of AVs can serve as floating (or probe) sensors, which can be utilized to infer traffic information while cruising around the roadway networks. Unlike conventional traffic sensing methods relying on fixed location sensors or moving sensors that acquire only the information of their carrying vehicle, this paper leverages data from AVs carrying sensors for not only the information of the AVs, but also the characteristics of the surrounding traffic. A high-resolution data-driven traffic sensing framework is proposed, which estimates the fundamental traffic state characteristics, namely, flow, density and speed in high spatio-temporal resolutions and of each lane on a general road, and it is developed under different levels of AV perception capabilities and for any AV market penetration rate. Experimental results show that the proposed method achieves high accuracy even with a low AV market penetration rate. This study would help policymakers and private sectors (e.g., Waymo) to understand the values of massive data collected by AVs in traffic operation and management. 
    more » « less