Passive acoustic monitoring is widely used for detection and localization of marine mammals. Typically, pressure sensors are used, although several studies utilized acoustic vector sensors (AVSs), that measure acoustic pressure and particle velocity and can estimate azimuths to acoustic sources. The AVSs can localize sources using a reduced number of sensors and do not require precise time synchronization between sensors. However, when multiple animals are calling concurrently, automated tracking of individual sources still poses a challenge, and manual methods are typically employed to link together sequences of measurements from a given source. This paper extends the method previously reported by Tenorio-Hallé, Thode, Lammers, Conrad, and Kim [J. Acoust. Soc. Am. 151(1), 126–137 (2022)] by employing and comparing two fully-automated approaches for azimuthal tracking based on the AVS data. One approach is based on random finite set statistics and the other on message passing algorithms, but both approaches utilize the underlying Bayesian statistical framework. The proposed methods are tested on several days of AVS data obtained off the coast of Maui and results show that both approaches successfully and efficiently track multiple singing humpback whales. The proposed methods thus made it possible to develop a fully-automated AVS tracking approach applicable to all species of baleen whales.
more »
« less
Multisensor Multiobject Tracking With Improved Sampling Efficiency
Passive monitoring of acoustic or radio sources has important applications in modern convenience, public safety, and surveillance. A key task in passive monitoring is multiobject tracking (MOT). This paper presents a Bayesian method for multisensor MOT for challenging tracking problems where the object states are high-dimensional, and the measurements follow a nonlinear model. Our method is developed in the framework of factor graphs and the sum-product algorithm (SPA) and implemented using random samples or “particles”. The multimodal probability density functions provided by the SPA are effectively represented by a Gaussian mixture model (GMM). To perform the operations of the SPA with improved sample efficiency, we make use of particle flow (PFL). Here, particles are migrated towards regions of high likelihood based on the solution of a partial differential equation. This makes it possible to obtain good object detection and tracking performance even in challenging multisensor MOT scenarios with single sensor measurements that have a lower dimension than the object positions. We perform a numerical evaluation in a passive acoustic monitoring scenario where multiple sources are tracked in 3-D from 1-D time difference-of-arrival (TDOA) measurements provided by pairs of hydrophones. Our numerical results, obtained by processing synthetic and real data, demonstrate favorable detection and estimation accuracy compared to state-of-the-art reference techniques.
more »
« less
- Award ID(s):
- 2146261
- PAR ID:
- 10564930
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Signal Processing
- Volume:
- 72
- ISSN:
- 1053-587X
- Page Range / eLocation ID:
- 2036 to 2053
- Subject(s) / Keyword(s):
- Multiobject tracking, particle flow, factor graphs, sum-product algorithm.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent work in adversarial machine learning started to focus on the visual perception in autonomous driving and studied Adversarial Examples (AEs) for object detection models. However, in such visual perception pipeline the detected objects must also be tracked, in a process called Multiple Object Tracking (MOT), to build the moving trajectories of surrounding obstacles. Since MOT is designed to be robust against errors in object detection, it poses a general challenge to existing attack techniques that blindly target objection detection: we find that a success rate of over 98% is needed for them to actually affect the tracking results, a requirement that no existing attack technique can satisfy. In this paper, we are the first to study adversarial machine learning attacks against the complete visual perception pipeline in autonomous driving, and discover a novel attack technique, tracker hijacking, that can effectively fool MOT using AEs on object detection. Using our technique, successful AEs on as few as one single frame can move an existing object in to or out of the headway of an autonomous vehicle to cause potential safety hazards. We perform evaluation using the Berkeley Deep Drive dataset and find that on average when 3 frames are attacked, our attack can have a nearly 100% success rate while attacks that blindly target object detection only have up to 25%.more » « less
-
Abstract—Multi-Object Tracking (MOT) is a critical task in computer vision, with applications ranging from surveillance systems to autonomous driving. However, threats to MOT algorithms have yet been widely studied. In particular, incorrect association between the tracked objects and their assigned IDs can lead to severe consequences, such as wrong trajectory predictions. Previous attacks against MOT either focused on hijacking the trackers of individual objects, or manipulating the tracker IDs in MOT by attacking the integrated object detection (OD) module in the digital domain, which are model-specific, non-robust, and only able to affect specific samples in offline datasets. In this paper, we present ADVTRAJ, the first online and physical ID-manipulation attack against tracking-by-detection MOT, in which an attacker uses adversarial trajectories to transfer its ID to a targeted object to confuse the tracking system, without attacking OD. Our simulation results in CARLA show that ADVTRAJ can fool ID assignments with 100% success rate in various scenarios for white-box attacks against SORT, which also have high attack transferability (up to 93% attack success rate) against state-of-the-art (SOTA) MOT algorithms due to their common design principles. We characterize the patterns of trajectories generated by ADVTRAJ and propose two universal adversarial maneuvers that can be performed by a human walker/driver in daily scenarios. Our work reveals under-explored weaknesses in the object association phase of SOTA MOT systems, and provides insights into enhancing the robustness of such systemsmore » « less
-
Despite recent progress in Multiple Object Tracking (MOT), several obstacles such as occlusions, similar objects, and complex scenes remain an open challenge. Meanwhile, a systematic study of the cost-performance tradeoff for the popular tracking-by-detection paradigm is still lacking. This paper introduces SMILEtrack, an innovative object tracker that effectively addresses these challenges by integrating an efficient object detector with a Siamese network-based Similarity Learning Module (SLM). The technical contributions of SMILETrack are twofold. First, we propose an SLM that calculates the appearance similarity between two objects, overcoming the limitations of feature descriptors in Separate Detection and Embedding (SDE) models. The SLM incorporates a Patch Self-Attention (PSA) block inspired by the vision Transformer, which generates reliable features for accurate similarity matching. Second, we develop a Similarity Matching Cascade (SMC) module with a novel GATE function for robust object matching across consecutive video frames, further enhancing MOT performance. Together, these innovations help SMILETrack achieve an improved trade-off between the cost (e.g., running speed) and performance (e.g., tracking accuracy) over several existing state-of-the-art benchmarks, including the popular BYTETrack method. SMILETrack outperforms BYTETrack by 0.4-0.8 MOTA and 2.1-2.2 HOTA points on MOT17 and MOT20 datasets. Code is available at http://github.com/pingyang1117/SMILEtrack_official.more » « less
-
Multiobject tracking (MOT) is an important task in robotics, autonomous driving, and maritime surveillance. Traditional work on MOT is model-based and aims to establish algorithms in the framework of sequential Bayesian estimation. More recent methods are fully data-driven and rely on the train- ing of neural networks. The two approaches have demonstrated advantages in certain scenarios. In particular, in problems where plenty of labeled data for the training of neural networks is available, data-driven MOT tends to have advantages compared to traditional methods. A natural thought is whether a general and efficient framework can integrate the two approaches. This paper advances a recently introduced hybrid model-based and data-driven method called neural-enhanced belief propagation (NEBP). Compared to existing work on NEBP for MOT, it introduces a novel neural architecture that can improve data association and new object initialization, two critical aspects of MOT. The proposed tracking method is leading the nuScenes LiDAR-only tracking challenge at the time of submission of this paper.more » « less
An official website of the United States government

