Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
AAS (Ed.)Abstract A novel methodology is developed to extract accurate skeletal reaction models for nuclear combustion. Local sensitivities of isotope mass fractions with respect to reaction rates are modeled based on the forced optimally time-dependent (f-OTD) scheme. These sensitivities are then analyzed temporally to generate skeletal models. The methodology is demonstrated by conducting skeletal reduction of constant density and temperature burning of carbon and oxygen relevant to Type Ia supernovae (SNe Ia). The 495-isotopes Torch model is chosen as the detailed reaction network. A map of maximum production of56Ni in SNe Ia is produced for different temperatures, densities, and proton-to-neutron ratios. The f-OTD simulations and the sensitivity analyses are then performed with initial conditions from this map. A series of skeletal models are derived and their performances are assessed by comparison against currently existing skeletal models. Previous models have been constructed intuitively by assuming the dominance ofα-chain reactions. The comparison of the newly generated skeletal models against previous models is based on the predicted energy release and44Ti and56Ni abundances by each model. The consequences ofye≠ 0.5 in the initial composition are also explored whereyeis the electron fraction. The simulated results show that56Ni production decreases by decreasingyeas expected, and that the43Sc is a key isotope in proton and neutron channels toward56Ni production. It is shown that an f-OTD skeletal model with 150 isotopes can accurately predict the56Ni abundance in SNe Ia forye≲ 0.5 initial conditions.more » « less
-
CTM (Ed.)A dynamical low-rank approximation is developed for reduced-order modelling (ROM) of the filtered density function (FDF) transport equation, which is utilised for large eddy simulation (LES) of turbulent reacting flows. In this methodology, the evolution of the composition matrix describing the FDF transport via a set of Langevin equations is con- strained to a low-rank matrix manifold. The composition matrix is approximated using a low-rank factorisation, which consists of two thin, time-dependent matrices repre- senting spatial and composition bases, along with a small time-dependent coefficient matrix. The evolution equations for spatial and composition subspaces are derived by projecting the composition transport equation onto the tangent space of the low-rank matrix manifold. Unlike conventional ROMs, such as those based on principal com- ponent analysis, both subspaces are time-dependent and the ROM does not require any prior data to extract the low-dimensional subspaces. As a result, the constructed ROM adapts on the fly to changes in the dynamics. For demonstration, LES via the time-dependent bases (TDB) is conducted of the canonical configuration of a tempo- rally developing planar CO/H2 jet flame. The flame is rich with strong flame-turbulence interactions resulting in local extinction followed by re-ignition. The combustion chem- istry is modelled via the skeletal kinetics, containing 11 species with 21 reaction steps. It is shown that the FDF-TDB yields excellent predictions of various stamore » « lessFree, publicly-accessible full text available April 16, 2026
-
Accurate simulation of turbulent flows is of crucial importance in many branches of science and engineering. Direct numerical simulation (DNS) provides the highest fidelity means of capturing all intricate physics of turbulent transport. However, the method is computationally expensive because of the wide range of turbulence scales that must be accounted for in such simulations. Large eddy simulation (LES) provides an alternative. In such simulations, the large scales of the flow are resolved, and the effects of small scales are modelled. Reconstruction of the DNS field from the low-resolution LES is needed for a wide variety of applications. Thus the construction of super-resolution methodologies that can provide this reconstruction has become an area of active research. In this work, a new physics-guided neural network is developed for such a reconstruction. The method leverages the partial differential equation that underlies the flow dynamics in the design of spatio-temporal model architecture. A degradation-based refinement method is also developed to enforce physical constraints and to further reduce the accumulated reconstruction errors over long periods. Detailed DNS data on two turbulent flow configurations are used to assess the performance of the model.more » « less
-
A local-sensitivity-analysis technique is employed to generate new skeletal reaction models for methane combustion from the foundational fuel chemistry model (FFCM-1). The sensitivities of the thermo-chemical variables with respect to the reaction rates are computed via the forced-optimally time dependent (f-OTD) methodology. In this methodology, the large sensitivity matrix containing all local sensitivities is modeled as a product of two low-rank time-dependent matrices. The evolution equations of these matrices are derived from the governing equations of the system. The modeled sensitivities are computed for the auto-ignition of methane at atmospheric and high pressures with different sets of initial temperatures, and equivalence ratios. These sensitivities are then analyzed to rank the most important (sensitive) species. A series of skeletal models with different number of species and levels of accuracy in reproducing the FFCM-1 results are suggested. The performances of the generated models are compared against FFCM-1 in predicting the ignition delay, the laminar flame speed, and the flame extinction. The results of this comparative assessment suggest the skeletal models with 24 and more species generate the FFCM-1 results with an excellent accuracy.more » « less
-
Taylor and Francis (Ed.)A new computational methodology, termed ‘PeleLM-FDF’ is developed and utilised for high fidelity large eddy simulation (LES) of complex turbulent combustion systems. This methodology is constructed via a hybrid scheme combining the Eulerian PeleLM base flow solver with the Lagrangian Monte Carlo simulator of the filtered density func- tion (FDF) for the subgrid scale reactive scalars. The resulting methodology is capable of simulating some of the most intricate physics of complex turbulence-combustion interactions. This is demonstrated by LES of a non-premixed CO/H2 temporally evolv- ing jet flame. The chemistry is modelled via a skeletal kinetics model, and the results are appraised via a posteriori comparisons against direct numerical simulation (DNS) data of the same flame. Excellent agreements are observed for the time evolution of various statistics of the thermo-chemical quantities, including the manifolds of the multi-scalar mixing. The new methodology is capable of capturing the complex phe- nomena of flame-extinction and re-ignition at a 1/512 of the computational cost of the DNS. The high fidelity and the computational affordability of the new PeleLM-FDF solver warrants its consideration for LES of practical turbulent combustion systems.more » « less
An official website of the United States government

Full Text Available