skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: VERITAS : A density-functional theory-based multiband kinetic model for understanding x-ray spectroscopy of dense plasmas
X-ray spectroscopy has long been a powerful diagnostic tool for hot, dilute plasmas, providing insights into plasma conditions by measuring line shifts and broadenings of atomic transitions. The technique critically depends on the accuracy of atomic physics models used to interpret spectroscopic measurements for inferring plasma properties such as free-electron density and temperature. Over the past decades, the atomic and plasma physics communities have developed robust atomic physics models to account for various processes in hot, dilute classical plasmas. While these models have been successful in that regime, their applicability becomes uncertain when interpreting x-ray spectroscopy experiments of above-solid-density plasmas. Given that finite-temperature density-functional theory (DFT) offers a more accurate description of dense plasma environments, we present the development of a DFT-based multi-band kinetic model, VERITAS, designed to improve the interpretation of x-ray spectroscopic measurements in high-density plasmas produced by laser-driven spherical implosions. This work details the VERITAS model and its application to both time-integrated and time-resolved x-ray spectra from implosion experiments on OMEGA. The advantages and limitations of the VERITAS model will also be discussed, along with potential directions for advancing x-ray spectroscopy of dense and superdense plasmas.  more » « less
Award ID(s):
2205521
PAR ID:
10631644
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Physics of Plasmas
Volume:
32
Issue:
7
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spectroscopic measurements of dense plasmas at billions of atmospheres provide tests to our fundamental understanding of how matter behaves at extreme conditions. Developing reliable atomic physics models at these conditions, benchmarked by experimental data, is crucial to an improved understanding of radiation transport in both stars and inertial fusion targets. However, detailed spectroscopic measurements at these conditions are rare, and traditional collisional-radiative equilibrium models, based on isolated-atom calculations and ad hoc continuum lowering models, have proved questionable at and beyond solid density. Here we report time-integrated and time-resolved x-ray spectroscopy measurements at several billion atmospheres using laser-driven implosions of Cu-doped targets. We use the imploding shell and its hot core at stagnation to probe the spectral changes of Cu-doped witness layer. These measurements indicate the necessity and viability of modeling dense plasmas with self-consistent methods like density-functional theory, which impact the accuracy of radiation transport simulations used to describe stellar evolution and the design of inertial fusion targets. 
    more » « less
  2. Z-pinches have been intensively studied for their applications to high energy density (HED) physics, x-ray sources, astrophysics, and inertial confinement fusion. Alumel (mostly Ni) double planar wire array (DPWA) Z-pinch experiments were performed on the Zebra generator at the enhanced current of 1.6 MA with an advanced setup of diagnostics to measure the temporal evolution of x-ray radiation from plasmas. The implementation of two time-gated spectrometers which recorded hard and soft x-ray radiation allowed for simultaneous studies of K-shell and L-shell radiating plasmas, respectively, in a single experiment. Two almost identical DPWA experiments established a wide observation window around the main x-ray burst. Overall, time-gated plasma spectroscopy provided more information on temporal evolution of ‘hot’ and ‘cold’ K-shell radiating plasmas compared to slowly evolving L-shell radiating plasma. In addition, new spectral features such as from hollow ions were observed and studied using the time-gated K-shell plasma spectroscopy, which is important for further investigation of exotic ion states in HED plasmas. 
    more » « less
  3. Abstract The Wootton Center for Astrophysical Plasma Properties (WCAPP) is a new center focusing on the spectroscopic properties of stars and accretion disks using “at-parameter” experiments. Currently, these experiments use the X-ray output of the Z machine at Sandia National Laboratories — the largest X-ray source in the world — to heat plasmas to the same conditions (temperature, density, and radiation environment) as those observed in astronomical objects. The experiments include measuring (1) density-dependent opacities of iron-peak elements at solar interior conditions, (2) spectral lines of low-Z elements at white dwarf photospheric conditions, (3) atomic population kinetics of neon in a radiation-dominated environment, and (4) resonant Auger destruction (RAD) of silicon at conditions found in accretion disks around supermassive black holes. In particular, we report on recent results of our experiments involving helium at white dwarf photospheric conditions. We present results showing disagreement between inferred electron densities using the Hβ line and the He I 5876 Å line, most likely indicating incompleteness in our modeling of this helium line. 
    more » « less
  4. Abstract High-intensity, short-pulse lasers are crucial for generating energetic electrons that produce high-energy-density (HED) states in matter, offering potential applications in igniting dense fusion fuels for fast ignition laser fusion. High-density targets heated by these electrons exhibit spatially non-uniform and highly transient conditions, which have been challenging to characterize due to limitations in diagnostics that provide simultaneous high spatial and temporal resolution. Here, we employ an X-ray Free Electron Laser (XFEL) to achieve spatiotemporally resolved measurements at sub-micron and femtosecond scales on a solid-density copper foil heated by laser-driven fast electrons. Our X-ray transmission imaging reveals the formation of a solid-density hot plasma localized to the laser spot size, surrounded by Fermi degenerate, warm dense matter within a picosecond, and the energy relaxation occurring within the hot plasma over tens of picoseconds. These results validate 2D particle-in-cell simulations incorporating atomic processes and provide insights into the energy transfer mechanisms beyond current simulation capabilities. This work significantly advances our understanding of rapid fast electron heating and energy relaxation in solid-density matter, serving as a key stepping stone towards efficient high-density plasma heating and furthering the fields of HED science and inertial fusion energy research using intense, short-pulse lasers. 
    more » « less
  5. Understanding how plasmas thermalize when density gradients are steep remains a fundamental challenge in plasma physics, with direct implications for fusion experiments and astrophysical phenomena. Standard hydrodynamic models break down in these regimes, and kinetic theories make predictions that have never been directly tested. Here, we present the first detailed phase-space measurements of a strongly coupled plasma as it evolves from sharp density gradients to thermal equilibrium. Using laser-induced fluorescence imaging of an ultracold calcium plasma, we track the complete ion distribution function f(x,v,t). We discover that commonly used kinetic models (Bhatnagar–Gross–Krook and Lenard–Bernstein) overpredict thermalization rates, even while correctly capturing the initial counterstreaming plasma formation. Our measurements reveal that the initial ion acceleration response scales linearly with electron temperature, and that the simulations underpredict the initial ion response. In our geometry we demonstrate the formation of well-controlled counterpropagating plasma beams. This experimental platform enables precision tests of kinetic theories and opens new possibilities for studying plasma stopping power and flow-induced instabilities in strongly coupled systems. 
    more » « less