skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2207638

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract GW230529 is the first compact binary coalescence detected by the LIGO–Virgo–KAGRA collaboration with at least one component mass confidently in the lower mass gap, corresponding to the range 3–5M. If interpreted as a neutron star–black hole merger, this event has the most symmetric mass ratio detected so far and therefore has a relatively high probability of producing electromagnetic (EM) emission. However, no EM counterpart has been reported. At the merger timet0, Swift-BAT and Fermi-GBM together covered 100% of the sky. Performing a targeted search in a time window [t0− 20 s,t0+ 20 s], we report no detection by the Swift-BAT and Fermi-GBM instruments. Combining the position-dependentγ-ray flux upper limits and the gravitational-wave posterior distribution of luminosity distance, sky localization, and inclination angle of the binary, we derive constraints on the characteristic luminosity and structure of the jet possibly launched during the merger. Assuming atop-hatjet structure, we exclude at 90% credibility the presence of a jet that has at the same time an on-axis isotropic luminosity ≳1048erg s−1in the bolometric band 1 keV–10 MeV and a jet opening angle ≳15°. Similar constraints are derived by testing other assumptions about the jet structure profile. Excluding GRB 170817A, the luminosity upper limits derived here are below the luminosity of any GRB observed so far. 
    more » « less
  2. Abstract The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where each detector has a 'xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tuned toward low frequencies and working at cryogenic temperature. Here, we examine the scientific perspectives under possible variations of this reference design. We perform a detailed evaluation of the science case for a single triangular geometry observatory, and we compare it with the results obtained for a network of two L-shaped detectors (either parallel or misaligned) located in Europe, considering different choices of arm-length for both the triangle and the 2L geometries. We also study how the science output changes in the absence of the low-frequency instrument, both for the triangle and the 2L configurations. We examine a broad class of simple 'metrics' that quantify the science output, related to compact binary coalescences, multi-messenger astronomy and stochastic backgrounds, and we then examine the impact of different detector designs on a more specific set of scientific objectives. 
    more » « less
  3. The ground-based gravitational wave (GW) detectors LIGO and Virgo have enabled the birth of multi-messenger GW astronomy via the detection of GWs from merging stellar-mass black holes (BHs) and neutron stars (NSs). GW170817, the first binary NS merger detected in GWs and all bands of the electromagnetic spectrum, is an outstanding example of the impact that GW discoveries can have on multi-messenger astronomy. Yet, GW170817 is only one of the many and varied multi-messenger sources that can be unveiled using ground-based GW detectors. In this contribution, we summarize key open questions in the astrophysics of stellar-mass BHs and NSs that can be answered using current and future-generation ground-based GW detectors, and highlight the potential for new multi-messenger discoveries ahead. 
    more » « less