skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Origins, Remnant, and Multimessenger Prospects of the Compact Binary Merger GW230529
Abstract This study investigates the origins of GW230529, delving into its formation from massive stars within isolated binary systems. Utilizing population-synthesis models, we present compelling evidence that the neutron star component forms second. However, the event’s low signal-to-noise ratio introduces complexities in identifying the underlying physical mechanisms driving its formation. Augmenting our analysis with insights from numerical relativity, we estimate the final black hole mass and spin to be approximately 5.3Mand 0.53, respectively. Furthermore, we employ the obtained posterior samples to calculate the ejecta mass and kilonova light curves resulting fromr-process nucleosynthesis. We find the ejecta mass to be within 0–0.06M, contingent on the neutron star equation of state. The peak brightness of the kilonova light curves indicates that targeted follow-up observations with a Rubin-like observatory may have detected this emission.  more » « less
Award ID(s):
2308886 2309064 2020275 2307147 2207638
PAR ID:
10583065
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Institute of Physics UK
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
977
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
167
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kilonovae, one source of electromagnetic emission associated with neutron star mergers, are powered by the decay of radioactive isotopes in the neutron-rich merger ejecta. Models for kilonova emission consistent with the electromagnetic counterpart to GW170817 predict characteristic abundance patterns, determined by the relative balance of different types of material in the outflow. Assuming that the observed source is prototypical, this inferred abundance pattern in turn must matchr-process abundances deduced by other means, such as what is observed in the solar system. We report on analysis comparing the input mass-weighted elemental compositions adopted in our radiative transfer simulations to the mass fractions of elements in the Sun, as a practical prototype for the potentially universal abundance signature from neutron star mergers. We characterize the extent to which our parameter inference results depend on our assumed composition for the dynamical and wind ejecta and examine how the new results compare to previous work. We find that a dynamical ejecta composition calculated using the FRDM2012 nuclear mass and FRLDM fission models with extremely neutron-rich ejecta (Ye= 0.035) along with moderately neutron-rich (Ye= 0.27) wind ejecta composition yields a wind-to-dynamical mass ratio ofMw/Md= 0.47, which best matches the observed AT2017gfo kilonova light curves while also producing the best-matching abundance of neutron capture elements in the solar system, though, allowing for systematics, the ratio may be as high as of order unity. 
    more » « less
  2. Abstract Core-collapse supernovae (SNe) are candidate sites for rapid neutron capture process (r-process) nucleosynthesis. We explore the effects of enrichment fromr-process nuclei on the light curves of hydrogen-rich SNe and assess the detectability of these signatures. We modify the radiation hydrodynamics code, SuperNova Explosion Code, to include the approximate effects of opacity and radioactive heating fromr-process elements in the supernova (SN) ejecta. We present models spanning a range of totalr-process massesMrand their assumed radial distribution within the ejecta, finding thatMr≳ 10−2Mis sufficient to induce appreciable differences in their light curves as compared to ordinary hydrogen-rich SNe (without anyr-process elements). The primary photometric signatures ofr-process enrichment include a shortening of the plateau phase, coinciding with the hydrogen-recombination photosphere retreating to ther-process-enriched layers, and a steeper post-plateau decline associated with a reddening of the SN colors. We compare ourr-process-enriched models to ordinary SNe models and observational data, showing that yields ofMr≳ 10−2Mare potentially detectable across several of the metrics used by transient observers, provided thatr-process-rich layers are mixed at least halfway to the ejecta surface. This detectability threshold can roughly be reproduced analytically using a two-zone (kilonova-within-an-SN) picture. Assuming that a small fraction of SNe produce a detectabler-process yield ofMr≳ 10−2M, and respecting constraints on the total Galactic production rate, we estimate that ≳103–104SNe need be observed to find oner-enriched event, a feat that may become possible with the Vera Rubin Observatory. 
    more » « less
  3. Abstract Multimessenger observations of binary neutron star mergers can provide valuable information on the nuclear equation of state (EOS). Here, we investigate the extent to which electromagnetic observations of the associated kilonovae allow us to place constraints on the EOS. For this, we use state-of-the-art three-dimensional general-relativistic magnetohydrodynamics simulations and detailed nucleosynthesis modeling to connect properties of observed light curves to properties of the accretion disk, and hence, the EOS. Using our general approach, we use multimessenger observations of GW170817/AT2017gfo to study the impact of various sources of uncertainty on inferences of the EOS. We constrain the radius of a 1.4Mneutron star to lie within 10.30 ≤R1.4≤ 13.0 km and the maximum mass to beMTOV≤ 3.06M
    more » « less
  4. Abstract As LIGO-Virgo-KAGRA enters its fourth observing run, a new opportunity to search for electromagnetic counterparts of compact object mergers will also begin. The light curves and spectra from the first “kilonova” associated with a binary neutron star merger (NSM) suggests that these sites are hosts of the rapid neutron capture (“ r ”) process. However, it is unknown just how robust elemental production can be in mergers. Identifying signposts of the production of particular nuclei is critical for fully understanding merger-driven heavy-element synthesis. In this study, we investigate the properties of very neutron-rich nuclei for which superheavy elements ( Z ≥ 104) can be produced in NSMs and whether they can similarly imprint a unique signature on kilonova light-curve evolution. A superheavy-element signature in kilonovae represents a route to establishing a lower limit on heavy-element production in NSMs as well as possibly being the first evidence of superheavy-element synthesis in nature. Favorable NSM conditions yield a mass fraction of superheavy elements X Z ≥104 ≈ 3 × 10 −2 at 7.5 hr post-merger. With this mass fraction of superheavy elements, we find that the component of kilonova light curves possibly containing superheavy elements may appear similar to those arising from lanthanide-poor ejecta. Therefore, photometric characterizations of superheavy-element rich kilonova may possibly misidentify them as lanthanide-poor events. 
    more » « less
  5. Abstract We present uniform modeling of eight kilonovae, five following short gamma-ray bursts (GRBs; including GRB 170817A) and three following long GRBs. We model their broadband afterglows to determine the relative contributions of afterglow and kilonova emission. We fit the kilonovae using a three-component model inMOSFiT, and report population median ejecta masses for the total, blue (κB = 0.5 cm2g−1), purple (κP = 3 cm2g−1), and red (κR = 10 cm2g−1) components. The kilonova of GW170817 is near the sample median in most derived properties. We investigate trends between the ejecta masses and the isotropic-equivalent and beaming-correctedγ-ray energies (Eγ,iso,Eγ), as well as rest-frame durations (T90,rest). We find long GRB kilonovae have higher median red ejecta masses (Mej,R ≳ 0.05M) compared to on-axis short GRB kilonovae (Mej,R ≲ 0.02M). We also observe a weak scaling between the total and red ejecta masses withEγ,isoandEγ, though a larger sample is needed to establish a significant correlation. These findings imply a connection between merger-driven long GRBs and larger tidal dynamical ejecta masses, which may indicate that their progenitors are asymmetric compact object binaries. We produce representative kilonova light curves, and find that the planned depths and cadences of the Rubin and Roman Observatory surveys will be sufficient for order-of-magnitude constraints onMej,B(and, for Roman,Mej,PandMej,R) of future kilonovae atz ≲ 0.1. 
    more » « less