Abstract Ground-based gravitational-wave detectors like Cosmic Explorer (CE) can be tuned to improve their sensitivity at high or low frequencies by tuning the response of the signal extraction cavity. Enhanced sensitivity above 2 kHz enables measurements of the post-merger gravitational-wave spectrum from binary neutron star mergers, which depends critically on the unknown equation of state of hot, ultra-dense matter. Improved sensitivity below 500 Hz favors precision tests of extreme gravity with black hole ringdown signals and improves the detection prospects while facilitating an improved measurement of source properties for compact binary inspirals at cosmological distances. At intermediate frequencies, a more sensitive detector can better measure the tidal properties of neutron stars. We present and characterize the performance of tuned CE configurations that are designed to optimize detections across different astrophysical source populations. These tuning options give CE the flexibility to target a diverse set of science goals with the same detector infrastructure. We find that a 40 km CE detector outperforms a 20 km in all key science goals other than access to post-merger physics. This suggests that CE should include at least one 40 km facility.
more »
« less
Science with the Einstein Telescope: a comparison of different designs
Abstract The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where each detector has a 'xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tuned toward low frequencies and working at cryogenic temperature. Here, we examine the scientific perspectives under possible variations of this reference design. We perform a detailed evaluation of the science case for a single triangular geometry observatory, and we compare it with the results obtained for a network of two L-shaped detectors (either parallel or misaligned) located in Europe, considering different choices of arm-length for both the triangle and the 2L geometries. We also study how the science output changes in the absence of the low-frequency instrument, both for the triangle and the 2L configurations. We examine a broad class of simple 'metrics' that quantify the science output, related to compact binary coalescences, multi-messenger astronomy and stochastic backgrounds, and we then examine the impact of different detector designs on a more specific set of scientific objectives.
more »
« less
- PAR ID:
- 10479474
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- JCAP
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2023
- Issue:
- 07
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 068
- Subject(s) / Keyword(s):
- gravitational wave detectors gravitational waves sources
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of Hz to several kHz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz, while in the Livingston detector, the noise reduction was a factor of 1.9 (5.8dB). These improvements directly impact LIGO’s scientific output for high-frequency sources (e.g., binary neutron star post-merger physics). The improved low-frequency sensitivity, which boosted the detector range by 15–18 % with respect to no squeezing, corresponds to an increase in astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter long filter cavity to each detector as part of the LIGO A+ upgrade.more » « less
-
The major construction and initial-phase operation of a second-generation gravitational-wave detector, KAGRA, has been completed. The entire 3 km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at lowfrequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test runwas accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is called iKAGRA. In this paper, we summarize the construction of KAGRA, including a study of the advantages and challenges of building an underground detector, and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel.more » « less
-
Infrared detectors using monolithically integrated doped semiconductor “designer metals” are proposed and experimentally demonstrated. We leverage the “designer metal” groundplanes to form resonant cavities with enhanced absorption tuned across the long-wave infrared (LWIR). Detectors are designed with two target absorption enhancement wavelengths: 8 and 10 μm. The core of our detectors are quantum-engineered LWIR type-II superlattice p-i-n detectors with total thicknesses of only 1.42 and 1.80 μm for the 8 and 10 μm absorption enhancement devices, respectively. Our 8 and 10 μm structures show peak external quantum efficiencies of 45 and 27%, which are 4.5× and 2.7× enhanced, respectively, compared to control structures. We demonstrate the clear advantages of this detector architecture, both in terms of ease of growth/fabrication and enhanced device performance. The proposed architecture is absorber- and device-structure agnostic, much thinner than state-of-the-art LWIR T2SLs, and offers the opportunity for the integration of low dark current LWIR detector architectures for significant enhancement of IR detectivity.more » « less
-
Abstract Based on the prior O1–O2 observing runs, about 30% of the data collected by Advanced LIGO and Virgo in the next observing runs are expected to be single-interferometer data, i.e. they will be collected at times when only one detector in the network is operating in observing mode. Searches for gravitational-wave signals from supernova events do not rely on matched filtering techniques because of the stochastic nature of the signals. If a Galactic supernova occurs during single-interferometer times, separation of its unmodelled gravitational-wave signal from noise will be even more difficult due to lack of coherence between detectors. We present a novel machine learning method to perform single-interferometer supernova searches based on the standard LIGO-Virgo coherent WaveBurst pipeline. We show that the method may be used to discriminate Galactic gravitational-wave supernova signals from noise transients, decrease the false alarm rate of the search, and improve the supernova detection reach of the detectors.more » « less