skip to main content


This content will become publicly available on July 1, 2024

Title: Science with the Einstein Telescope: a comparison of different designs
Abstract

The Einstein Telescope (ET), the European project for a third-generation gravitational-wave detector, has a reference configuration based on a triangular shape consisting of three nested detectors with 10 km arms, where each detector has a 'xylophone' configuration made of an interferometer tuned toward high frequencies, and an interferometer tuned toward low frequencies and working at cryogenic temperature. Here, we examine the scientific perspectives under possible variations of this reference design. We perform a detailed evaluation of the science case for a single triangular geometry observatory, and we compare it with the results obtained for a network of two L-shaped detectors (either parallel or misaligned) located in Europe, considering different choices of arm-length for both the triangle and the 2L geometries. We also study how the science output changes in the absence of the low-frequency instrument, both for the triangle and the 2L configurations. We examine a broad class of simple 'metrics' that quantify the science output, related to compact binary coalescences, multi-messenger astronomy and stochastic backgrounds, and we then examine the impact of different detector designs on a more specific set of scientific objectives.

 
more » « less
Award ID(s):
2012083 2006384 2207638
NSF-PAR ID:
10479474
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
JCAP
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2023
Issue:
07
ISSN:
1475-7516
Page Range / eLocation ID:
068
Subject(s) / Keyword(s):
["gravitational wave detectors","gravitational waves sources"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ground-based gravitational-wave detectors like Cosmic Explorer (CE) can be tuned to improve their sensitivity at high or low frequencies by tuning the response of the signal extraction cavity. Enhanced sensitivity above 2 kHz enables measurements of the post-merger gravitational-wave spectrum from binary neutron star mergers, which depends critically on the unknown equation of state of hot, ultra-dense matter. Improved sensitivity below 500 Hz favors precision tests of extreme gravity with black hole ringdown signals and improves the detection prospects while facilitating an improved measurement of source properties for compact binary inspirals at cosmological distances. At intermediate frequencies, a more sensitive detector can better measure the tidal properties of neutron stars. We present and characterize the performance of tuned CE configurations that are designed to optimize detections across different astrophysical source populations. These tuning options give CE the flexibility to target a diverse set of science goals with the same detector infrastructure. We find that a 40 km CE detector outperforms a 20 km in all key science goals other than access to post-merger physics. This suggests that CE should include at least one 40 km facility.

     
    more » « less
  2. Abstract

    Advanced LIGO and other ground-based interferometric gravitational-wave detectors use high laser power to minimize shot noise and suspended optics to reduce seismic noise coupling. This can result in an opto-mechanical coupling which can become unstable and saturate the interferometer control systems. The severity of these parametric instabilities scales with circulating laser power and first hindered LIGO operations in 2014. Static thermal tuning and active electrostatic damping have previously been used to control parametric instabilities at lower powers but are insufficient as power is increased. Here we report the first demonstration of dynamic thermal compensation to avoid parametric instability in an Advanced LIGO detector. Annular ring heaters that compensate central heating are used to tune the optical mode away from multiple problematic mirror resonance frequencies. We develop a single-cavity approximation model to simulate the optical beat note frequency during the central heating and ring heating transient. An experiment of dynamic ring heater tuning at the LIGO Livingston detector was carried out at 170 kW circulating power and, in agreement with our model, the third order optical beat note is controlled to avoid instability of the 15 and 15.5 kHz mechanical modes. We project that dynamic thermal compensation with ring heater input conditioning can be used in parallel with acoustic mode dampers to control the optical mode transient and avoid parametric instability of these modes up to Advanced LIGO’s design circulating power of 750  kW. The experiment also demonstrates the use of three mode interaction monitoring as a sensor of the cavity geometry, used to maintain theg-factor product tog1g2= 0.829 ± 0.004.

     
    more » « less
  3. Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of Hz to several kHz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz, while in the Livingston detector, the noise reduction was a factor of 1.9 (5.8dB). These improvements directly impact LIGO’s scientific output for high-frequency sources (e.g., binary neutron star post-merger physics). The improved low-frequency sensitivity, which boosted the detector range by 15–18 % with respect to no squeezing, corresponds to an increase in astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter long filter cavity to each detector as part of the LIGO A+ upgrade. 
    more » « less
  4. The Geological Orrery is a network of geological records of orbitally paced climate designed to address the inherent limitations of solutions for planetary orbits beyond 60 million years ago due to the chaotic nature of Solar System motion. We use results from two scientific coring experiments in Early Mesozoic continental strata: the Newark Basin Coring Project and the Colorado Plateau Coring Project. We precisely and accurately resolve the secular fundamental frequencies of precession of perihelion of the inner planets and Jupiter for the Late Triassic and Early Jurassic epochs (223–199 million years ago) using the lacustrine record of orbital pacing tuned only to one frequency (1/405,000 years) as a geological interferometer. Excepting Jupiter’s, these frequencies differ significantly from present values as determined using three independent techniques yielding practically the same results. Estimates for the precession of perihelion of the inner planets are robust, reflecting a zircon U–Pb-based age model and internal checks based on the overdetermined origins of the geologically measured frequencies. Furthermore, although not indicative of a correct solution, one numerical solution closely matches the Geological Orrery, with a very low probability of being due to chance. To determine the secular fundamental frequencies of the precession of the nodes of the planets and the important secular resonances with the precession of perihelion, a contemporaneous high-latitude geological archive recording obliquity pacing of climate is needed. These results form a proof of concept of the Geological Orrery and lay out an empirical framework to map the chaotic evolution of the Solar System.

     
    more » « less
  5. Multiple wavelength interferometry has long been considered an option for the measurement of large aspheric slope departures. In particular, a synthetic wavelength offers a variety of approaches by which large phase excursions can be unwrapped. Using multiple wavelengths can create collimation and magnification mismatch errors between the individual wavelengths that arise during beam expansion and propagation. Here, we present and analyze alignment and calibration methods for a dual-wavelength interferometer that can significantly reduce both misalignment errors and chromatic aberrations in the system. To correct for misalignment, a general method is described for the alignment of a dual-wavelength interferometer, including the alignment of lasers, beam expanders, beam splitters for combining beams and for compensating errors in the reference surface, and the fringe imaging system. A Fourier transform test at the detector surface was conducted to validate that there is essentially no magnification difference between two wavelengths resulting from misalignment of optical system. For the chromatic aberration introduced by the optical elements in the system, a ray-trace model of the interferometer has been established, to simulate the chromatic effect that optical elements will have on the measurement results. As an experimental test, we examine an off-axis spherical mirror in a non-null condition using a highly aliased interferogram. The above alignment methods and the results are analyzed based on the simulated system errors. Using this method, we demonstrate a measured surface profile of deviation of λ/25 which is comparable to a direct measurement profile of the surface on axis using a Fizeau interferometer. 
    more » « less