skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 2208130

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Due to the incapability of one-dimensional (1D) and two-dimensional (2D) models in simulating the frontal polymerization (FP) process in laminated composites with multiple fiber angles (e.g., cross-ply, angle-ply), modeling a three-dimensional (3D) domain, which is more representative of practical applications, provides critical guidance in the control and optimization of the FP process. In this paper, subroutines are developed to achieve the 3D modeling of FP in unidirectional and cross-ply carbon fiber laminates with finite element analysis, which are validated against the experimental data. The 3D model is employed to study the effect of triggering direction in relevance to the fiber direction on the FP process, which cannot be studied using traditional 1D/2D models. Our findings suggest that triggering in the fiber direction leads to a higher front velocity, in comparison to cases where front was triggered in the direction perpendicular to the fiber. Moreover, the average front velocity in cross-ply laminates is on average 20~25% lower than that in unidirectional laminates. When triggered using two opposite fronts in the in-plane direction, the maximum temperature of the thermal spike in the cross-ply laminate, when two fronts merge, is about 100 °C lower than that in the unidirectional laminate. In cross-ply laminates, a sloped pattern forms across the thickness direction as the front propagates in the in-plane direction, as opposed to the traditionally observed uniform propagation pattern in unidirectional cases. Furthermore, the effect of thermal conductivity is studied using two additional composite laminates with glass (1.14 W/m·K) and Kevlar fibers (0.04 W/m·K). It is shown that the frontal velocity, degree of cure, and the thermal spike temperature decrease as the thermal conductivity reduces. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Frontal polymerization (FP) is a promising alternative manufacturing method for thermoset-based fiber-reinforced polymer composites (FRP) in comparison with the traditional autoclave/oven-curing method, due to its rapid curing process, low energy consumption, and low cost. Optimizing the weight contents of initiators relative to the resin’s mass is needed to adjust the mechanical properties of FRPs in industrial applications. This study investigates the effect of varying the photo-initiator (PI) weight content on tensile properties and the frontal polymerization characteristics, including the front velocity, front temperature, and degree of cure, in the FP process of the epoxy resin. Specifically, a dual-initiator system, including PI and thermal-initiator (TI), is used to initiate the polymerization process by ultraviolent (UV) light. The weight content of the TI is fixed at 1 w%, and the relative PI concentration is varied from 0.2 w% to 0.5 wt%. Results show that increasing the PI amount from 0.2 wt% to 0.3 wt% significantly improves the front velocity and the degree of cure by about two times. Increasing the PI content from 0.3 wt% to 0.4 wt% results in 15% and 26% higher degree of cure and front velocity, respectively. Moreover, due to the different front velocity in the top and bottom regions of the specimen, the specimens with 0.4 wt% PI exhibited a curved shape. The specimen with 0.5 wt% PI is thermally degraded and foamed. By comparing tensile properties, it is found that increasing the PI concentration from 0.2 wt% to 0.3 wt% improves the tensile strength and Young’s modulus by 3.91% and 7%, respectively, while the tensile strength and the Young’s modulus of frontal polymerized specimens are on average 8% and 14% higher than traditionally oven-cured ones, respectively. 
    more » « less
    Free, publicly-accessible full text available September 18, 2024