skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2208391

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. Suppressing spurious oscillations is crucial for designing reliable high-order numerical schemes for hyperbolic conservation laws, yet it has been a challenge actively investigated over the past several decades. This paper proposes a novel, robust, and efficient oscillation-eliminating discontinuous Galerkin (OEDG) method on general meshes, motivated by the damping technique (see J. Lu, Y. Liu, and C. W. Shu [SIAM J. Numer. Anal. 59 (2021), pp. 1299–1324]). The OEDG method incorporates an oscillation-eliminating (OE) procedure after each Runge–Kutta stage, and it is devised by alternately evolving the conventional semidiscrete discontinuous Galerkin (DG) scheme and a damping equation. A novel damping operator is carefully designed to possess bothscale-invariantandevolution-invariantproperties. We rigorously prove the optimal error estimates of the fully discrete OEDG method for smooth solutions of linear scalar conservation laws. This might be the first generic fully discrete error estimate fornonlinearDG schemes with an automatic oscillation control mechanism. The OEDG method exhibits many notable advantages. It effectively eliminates spurious oscillations for challenging problems spanning various scales and wave speeds, without necessitating problem-specific parameters for all the tested cases. It also obviates the need for characteristic decomposition in hyperbolic systems. Furthermore, it retains the key properties of the conventional DG method, such as local conservation, optimal convergence rates, and superconvergence. Moreover, the OEDG method maintains stability under the normal Courant–Friedrichs–Lewy (CFL) condition, even in the presence of strong shocks associated with highly stiff damping terms. The OE procedure isnonintrusive, facilitating seamless integration into existing DG codes as an independent module. Its implementation is straightforward and efficient, involving only simple multiplications of modal coefficients by scalars. The OEDG approach provides new insights into the damping mechanism for oscillation control.It reveals the role of the damping operator as a modal filter, establishing close relations between the damping technique and spectral viscosity techniques.Extensive numerical results validate the theoretical analysis and confirm the effectiveness and advantages of the OEDG method. 
    more » « less
  4. Structure-aware Taylor (SAT) methods are a class of timestepping schemes designed for propagating linear hyperbolic solutions within a tent-shaped spacetime region. Tents are useful to design explicit time marching schemes on unstructured advancing fronts with built-in locally variable timestepping for arbitrary spatial and temporal discretization orders. The main result of this paper is that an s s -stage SAT timestepping within a tent is weakly stable under the time step constraint Δ t ≤ C h 1 + 1 / s \Delta t \leq Ch^{1+1/s} , where Δ t \Delta t is the time step size and h h is the spatial mesh size. Improved stability properties are also presented for high-order SAT time discretizations coupled with low-order spatial polynomials. A numerical verification of the sharpness of proven estimates is also included. 
    more » « less