skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: OEDG: Oscillation-eliminating discontinuous Galerkin method for hyperbolic conservation laws
Suppressing spurious oscillations is crucial for designing reliable high-order numerical schemes for hyperbolic conservation laws, yet it has been a challenge actively investigated over the past several decades. This paper proposes a novel, robust, and efficient oscillation-eliminating discontinuous Galerkin (OEDG) method on general meshes, motivated by the damping technique (see J. Lu, Y. Liu, and C. W. Shu [SIAM J. Numer. Anal. 59 (2021), pp. 1299–1324]). The OEDG method incorporates an oscillation-eliminating (OE) procedure after each Runge–Kutta stage, and it is devised by alternately evolving the conventional semidiscrete discontinuous Galerkin (DG) scheme and a damping equation. A novel damping operator is carefully designed to possess bothscale-invariantandevolution-invariantproperties. We rigorously prove the optimal error estimates of the fully discrete OEDG method for smooth solutions of linear scalar conservation laws. This might be the first generic fully discrete error estimate fornonlinearDG schemes with an automatic oscillation control mechanism. The OEDG method exhibits many notable advantages. It effectively eliminates spurious oscillations for challenging problems spanning various scales and wave speeds, without necessitating problem-specific parameters for all the tested cases. It also obviates the need for characteristic decomposition in hyperbolic systems. Furthermore, it retains the key properties of the conventional DG method, such as local conservation, optimal convergence rates, and superconvergence. Moreover, the OEDG method maintains stability under the normal Courant–Friedrichs–Lewy (CFL) condition, even in the presence of strong shocks associated with highly stiff damping terms. The OE procedure isnonintrusive, facilitating seamless integration into existing DG codes as an independent module. Its implementation is straightforward and efficient, involving only simple multiplications of modal coefficients by scalars. The OEDG approach provides new insights into the damping mechanism for oscillation control.It reveals the role of the damping operator as a modal filter, establishing close relations between the damping technique and spectral viscosity techniques.Extensive numerical results validate the theoretical analysis and confirm the effectiveness and advantages of the OEDG method.  more » « less
Award ID(s):
2208391
PAR ID:
10621028
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Mathematics of Computation
Volume:
94
ISSN:
0025-5718
Page Range / eLocation ID:
1147-1198
Subject(s) / Keyword(s):
Hyperbolic conservation laws discontinuous Galerkin method oscillation elimination modal filter scale invariance optimal error estimates
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this article, we introduce an invariant‐region‐preserving (IRP) limiter for thep‐system and the corresponding viscousp‐system, both of which share the same invariant region. Rigorous analysis is presented to show that for smooth solutions the order of approximation accuracy is not destroyed by the IRP limiter, provided the cell average stays away from the boundary of invariant region. Moreover, this limiter is explicit, and easy for computer implementation. A generic algorithm incorporating the IRP limiter is presented for high order finite volume type schemes as long as the evolved cell average of the underlying scheme stays strictly within the invariant region. For high order discontinuous Galerkin (DG) schemes to thep‐system, sufficient conditions are obtained for cell averages to stay in the invariant region. For the viscousp‐system, we design both second and third order IRP DG schemes. Numerical experiments are provided to test the proven properties of the IRP limiter and the performance of IRP DG schemes. 
    more » « less
  2. In this paper, we consider a class of discontinuous Galerkin (DG) methods for one-dimensional nonlocal diffusion (ND) problems. The nonlocal models, which are integral equations, are widely used in describing many physical phenomena with long-range interactions. The ND problem is the nonlocal analog of the classic diffusion problem, and as the interaction radius (horizon) vanishes, then the nonlocality disappears and the ND problem converges to the classic diffusion problem. Under certain conditions, the exact solution to the ND problem may exhibit discontinuities, setting it apart from the classic diffusion problem. Since the DG method shows its great advantages in resolving problems with discontinuities in computational fluid dynamics over the past several decades, it is natural to adopt the DG method to compute the ND problems. Based on [Q. Du, L. Ju, J. Lu and X. Tian,Commun. Appl. Math. Comput. 2 (2020) 31–55], we develop the DG methods with different penalty terms, ensuring that the proposed DG methods have local counterparts as the horizon vanishes. This indicates the proposed methods will converge to the existing DG schemes as the horizon vanishes, which is crucial for achievingasymptotic compatibility. Rigorous proofs are provided to demonstrate the stability, error estimates, and asymptotic compatibility of the proposed DG schemes. To observe the effect of the nonlocal diffusion, we also consider the time-dependent convection–diffusion problems with nonlocal diffusion. We conduct several numerical experiments, including accuracy tests and Burgers’ equation with nonlocal diffusion, and various horizons are taken to show the good performance of the proposed algorithm and validate the theoretical findings. 
    more » « less
  3. Abstract In this paper, we study the superconvergence of the semi-discrete discontinuous Galerkin (DG) method for linear hyperbolic equations in one spatial dimension. The asymptotic errors in cell averages, downwind point values, and the postprocessed solution are derived for the initial discretization by Gaussian projection (for periodic boundary condition) or Cao projection Cao et al. (SIAM J. Numer. Anal.5, 2555–2573 (2014)) (for Dirichlet boundary condition). We proved that the error constant in the superconvergence of order$$2k+1$$ 2 k + 1 for DG methods based on upwind-biased fluxes depends on the parity of the orderk. The asymptotic errors are demonstrated by various numerical experiments for scalar and vector hyperbolic equations. 
    more » « less
  4. In this paper, we study the error estimates to sufficiently smooth solutions of the nonlinear scalar conservation laws for the semi-discrete central discontinuous Galerkin (DG) finite element methods on uniform Cartesian meshes. A general approach with an explicitly checkable condition is established for the proof of optimal L 2 error estimates of the semi-discrete CDG schemes, and this condition is checked to be valid in one and two dimensions for polynomials of degree up to k = 8. Numerical experiments are given to verify the theoretical results. 
    more » « less
  5. null (Ed.)
    In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlinear and possibly degenerate parabolic stochastic partial differential equations, which is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method for purely hyperbolic equations to parabolic equations and shares with the DG method its advantage and flexibility. We prove the L 2 -stability of the numerical scheme for fully nonlinear equations. Optimal error estimates ( O ( h (k+1) )) for smooth solutions of semi-linear stochastic equations is shown if polynomials of degree k are used. We use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-valued stochastic ordinary differential equations derived from the spatial discretization. Numerical examples are given to display the performance of the LDG method. 
    more » « less