The thermal radiative transfer (TRT) equations form an integro-differential system that describes the propagation and collisional interactions of photons. Computing accurate and efficient numerical solutions TRT are challenging for several reasons, the first of which is that TRT is defined on a high-dimensional phase space that includes the independent variables of time, space, and velocity. In order to reduce the dimensionality of the phase space, classical approaches such as the P$$_N$$ (spherical harmonics) or the S$$_N$$ (discrete ordinates) ansatz are often used in the literature. In this work, we introduce a novel approach: the hybrid discrete (H$$^T_N$$) approximation to the radiative thermal transfer equations. This approach acquires desirable properties of both P$$_N$$ and S$$_N$$, and indeed reduces to each of these approximations in various limits: H$$^1_N$$ $$\equiv$$ P$$_N$$ and H$$^T_0$$ $$\equiv$$ S$$_T$$. We prove that H$$^T_N$$ results in a system of hyperbolic partial differential equations for all $$T\ge 1$$ and $$N\ge 0$$. Another challenge in solving the TRT system is the inherent stiffness due to the large timescale separation between propagation and collisions, especially in the diffusive (i.e., highly collisional) regime. This stiffness challenge can be partially overcome via implicit time integration, although fully implicit methods may become computationally expensive due to the strong nonlinearity and system size. On the other hand, explicit time-stepping schemes that are not also asymptotic-preserving in the highly collisional limit require resolving the mean-free path between collisions, making such schemes prohibitively expensive. In this work we develop a numerical method that is based on a nodal discontinuous Galerkin discretization in space, coupled with a semi-implicit discretization in time. In particular, we make use of a second order explicit Runge-Kutta scheme for the streaming term and an implicit Euler scheme for the material coupling term. Furthermore, in order to solve the material energy equation implicitly after each predictor and corrector step, we linearize the temperature term using a Taylor expansion; this avoids the need for an iterative procedure, and therefore improves efficiency. In order to reduce unphysical oscillation, we apply a slope limiter after each time step. Finally, we conduct several numerical experiments to verify the accuracy, efficiency, and robustness of the H$$^T_N$$ ansatz and the numerical discretizations.
more »
« less
Stability of structure-aware Taylor methods for tents
Structure-aware Taylor (SAT) methods are a class of timestepping schemes designed for propagating linear hyperbolic solutions within a tent-shaped spacetime region. Tents are useful to design explicit time marching schemes on unstructured advancing fronts with built-in locally variable timestepping for arbitrary spatial and temporal discretization orders. The main result of this paper is that an s s -stage SAT timestepping within a tent is weakly stable under the time step constraint Δ t ≤ C h 1 + 1 / s \Delta t \leq Ch^{1+1/s} , where Δ t \Delta t is the time step size and h h is the spatial mesh size. Improved stability properties are also presented for high-order SAT time discretizations coupled with low-order spatial polynomials. A numerical verification of the sharpness of proven estimates is also included.
more »
« less
- PAR ID:
- 10433766
- Date Published:
- Journal Name:
- Mathematics of Computation
- Volume:
- 92
- Issue:
- 341
- ISSN:
- 0025-5718
- Page Range / eLocation ID:
- 1061 to 1086
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study algorithms using randomized value functions for exploration in reinforcement learning. This type of algorithms enjoys appealing empirical performance. We show that when we use 1) a single random seed in each episode, and 2) a Bernstein-type magnitude of noise, we obtain a worst-case O~(H√SAT) regret bound for episodic time-inhomogeneous Markov Decision Process where S is the size of state space, A is the size of action space, H is the planning horizon and T is the number of interactions. This bound polynomially improves all existing bounds for algorithms based on randomized value functions, and for the first time, matches the Ω(H√SAT) lower bound up to logarithmic factors. Our result highlights that randomized exploration can be near-optimal, which was previously achieved only by optimistic algorithms. To achieve the desired result, we develop 1) a new clipping operation to ensure both the probability of being optimistic and the probability of being pessimistic are lower bounded by a constant, and 2) a new recursive formula for the absolute value of estimation errors to analyze the regret.more » « less
-
null (Ed.)Abstract A measurement of the $$ B_{s}^{0} \rightarrow J/\psi \phi $$ B s 0 → J / ψ ϕ decay parameters using $$ 80.5\, \mathrm {fb^{-1}} $$ 80.5 fb - 1 of integrated luminosity collected with the ATLAS detector from 13 $$\text {Te}\text {V}$$ Te proton–proton collisions at the LHC is presented. The measured parameters include the CP -violating phase $$\phi _{s} $$ ϕ s , the width difference $$ \Delta \Gamma _{s}$$ Δ Γ s between the $$B_{s}^{0}$$ B s 0 meson mass eigenstates and the average decay width $$ \Gamma _{s}$$ Γ s . The values measured for the physical parameters are combined with those from $$ 19.2\, \mathrm {fb^{-1}} $$ 19.2 fb - 1 of 7 and 8 $$\text {Te}\text {V}$$ Te data, leading to the following: $$\begin{aligned} \phi _{s}= & {} -0.087 \pm 0.036 ~\mathrm {(stat.)} \pm 0.021 ~\mathrm {(syst.)~rad} \\ \Delta \Gamma _{s}= & {} 0.0657 \pm 0.0043 ~\mathrm {(stat.)}\pm 0.0037 ~\mathrm {(syst.)~ps}^{-1} \\ \Gamma _{s}= & {} 0.6703 \pm 0.0014 ~\mathrm {(stat.)}\pm 0.0018 ~\mathrm {(syst.)~ps}^{-1} \end{aligned}$$ ϕ s = - 0.087 ± 0.036 ( stat . ) ± 0.021 ( syst . ) rad Δ Γ s = 0.0657 ± 0.0043 ( stat . ) ± 0.0037 ( syst . ) ps - 1 Γ s = 0.6703 ± 0.0014 ( stat . ) ± 0.0018 ( syst . ) ps - 1 Results for $$\phi _{s} $$ ϕ s and $$ \Delta \Gamma _{s}$$ Δ Γ s are also presented as 68% confidence level contours in the $$\phi _{s} $$ ϕ s – $$ \Delta \Gamma _{s}$$ Δ Γ s plane. Furthermore the transversity amplitudes and corresponding strong phases are measured. $$\phi _{s} $$ ϕ s and $$ \Delta \Gamma _{s}$$ Δ Γ s measurements are in agreement with the Standard Model predictions.more » « less
-
We consider the problem of space-efficiently estimating the number of simplices in a hypergraph stream. This is the most natural hypergraph generalization of the highly-studied problem of estimating the number of triangles in a graph stream. Our input is a k-uniform hypergraph H with n vertices and m hyperedges, each hyperedge being a k-sized subset of vertices. A k-simplex in H is a subhypergraph on k+1 vertices X such that all k+1 possible hyperedges among X exist in H. The goal is to process the hyperedges of H, which arrive in an arbitrary order as a data stream, and compute a good estimate of T_k(H), the number of k-simplices in H. We design a suite of algorithms for this problem. As with triangle-counting in graphs (which is the special case k = 2), sublinear space is achievable but only under a promise of the form T_k(H) ≥ T. Under such a promise, our algorithms use at most four passes and together imply a space bound of O(ε^{-2} log δ^{-1} polylog n ⋅ min{(m^{1+1/k})/T, m/(T^{2/(k+1)})}) for each fixed k ≥ 3, in order to guarantee an estimate within (1±ε)T_k(H) with probability ≥ 1-δ. We also give a simpler 1-pass algorithm that achieves O(ε^{-2} log δ^{-1} log n⋅ (m/T) (Δ_E + Δ_V^{1-1/k})) space, where Δ_E (respectively, Δ_V) denotes the maximum number of k-simplices that share a hyperedge (respectively, a vertex), which generalizes a previous result for the k = 2 case. We complement these algorithmic results with space lower bounds of the form Ω(ε^{-2}), Ω(m^{1+1/k}/T), Ω(m/T^{1-1/k}) and Ω(mΔ_V^{1/k}/T) for multi-pass algorithms and Ω(mΔ_E/T) for 1-pass algorithms, which show that some of the dependencies on parameters in our upper bounds are nearly tight. Our techniques extend and generalize several different ideas previously developed for triangle counting in graphs, using appropriate innovations to handle the more complicated combinatorics of hypergraphs.more » « less
-
null (Ed.)Abstract We propose a heuristic algorithm to solve the underlying hard problem of the CSIDH cryptosystem (and other isogeny-based cryptosystems using elliptic curves with endomorphism ring isomorphic to an imaginary quadratic order 𝒪). Let Δ = Disc(𝒪) (in CSIDH, Δ = −4 p for p the security parameter). Let 0 < α < 1/2, our algorithm requires: A classical circuit of size 2 O ˜ log ( | Δ | ) 1 − α . $$2^{\tilde{O}\left(\log(|\Delta|)^{1-\alpha}\right)}.$$ A quantum circuit of size 2 O ˜ log ( | Δ | ) α . $$2^{\tilde{O}\left(\log(|\Delta|)^{\alpha}\right)}.$$ Polynomial classical and quantum memory. Essentially, we propose to reduce the size of the quantum circuit below the state-of-the-art complexity 2 O ˜ log ( | Δ | ) 1 / 2 $$2^{\tilde{O}\left(\log(|\Delta|)^{1/2}\right)}$$ at the cost of increasing the classical circuit-size required. The required classical circuit remains subexponential, which is a superpolynomial improvement over the classical state-of-the-art exponential solutions to these problems. Our method requires polynomial memory, both classical and quantum.more » « less
An official website of the United States government

