skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2208392

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points $$[\x_1, \x_2, \ldots, \x_n] = \X \in \R^{d \times n}$$ and a vector $$\y \in \R^d$$, the goal is to find coefficients $$\w \in \R^n$$ so that $$\X \w \approx \y$$, subject to some desired structure on $$\w$$. In this work we seek $$\w$$ that forms a local reconstruction of $$\y$$ by solving a regularized least squares regression problem. We obtain local solutions through a locality function that promotes the use of columns of $$\X$$ that are close to $$\y$$ when used as a regularization term. We prove that, for all levels of regularization and under a mild condition that the columns of $$\X$$ have a unique Delaunay triangulation, the optimal coefficients' number of non-zero entries is upper bounded by $d+1$, thereby providing local sparse solutions when $$d \ll n$$. Under the same condition we also show that for any $$\y$$ contained in the convex hull of $$\X$$ there exists a regime of regularization parameter such that the optimal coefficients are supported on the vertices of the Delaunay simplex containing $$\y$$. This provides an interpretation of the sparsity as having structure obtained implicitly from the Delaunay triangulation of $$\X$$. We demonstrate that our locality regularized problem can be solved in comparable time to other methods that identify the containing Delaunay simplex. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Energy-efficient IoT sensor nodes enable scalable monitoring of diverse physical environments, some of which are exposed to extreme and harsh operating conditions (such as heavy rain or strong movement). For reliable operation of such devices, certain variables must be adaptively adjusted. One of these variables is the transmission power of outgoing packets. In this work, we experimentally investigate how the movement of different bodies of water affects fluctuations in link quality and propose a model for predicting the received power. Once the received power is predicted, a transmitting node can adjust the transmission power to bring the received power to a desired level. Our model is based on minimum mean square estimation (MMSE) and leverages the received power statistics and the movement experienced by the nodes during communication. A disadvantage of MMSE is its dependence on matrix inversion, which is computationally intensive and difficult to implement on resource-constrained devices. We avoid this step and estimate the model parameters using gradient descent, which is much easier to implement. The model achieves an average prediction accuracy of 91% (SD = 1.7%) even with a small number of iterations. 
    more » « less
    Free, publicly-accessible full text available August 8, 2026
  3. This paper addresses the problem of estimating the positions of points from distance measurements corrupted by sparse outliers. Specifically, we consider a setting with two types of nodes: anchor nodes, for which exact distances to each other are known, and target nodes, for which complete but corrupted distance measurements to the anchors are available. To tackle this problem, we propose a novel algorithm powered by Nystro m method and robust principal component analysis. Our method is computationally efficient as it processes only a localized subset of the distance matrix and does not require distance measurements between target nodes. Empirical evaluations on synthetic datasets, designed to mimic sensor localization, and on molecular experiments, demonstrate that our algorithm achieves accurate recovery with a modest number of anchors, even in the presence of high levels of sparse outliers. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026
  4. Unlabeled sensing is a linear inverse problem with permuted measurements. We propose an alternating minimization (AltMin) algorithm with a suitable initialization for two widely considered permutation models: partially shuffled/k-sparse permutations and r-local/block diagonal permutations. Key to the performance of the AltMin algorithm is the initialization. For the exact unlabeled sensing problem, assuming either a Gaussian measurement matrix or a sub-Gaussian signal, we bound the initialization error in terms of the number of blocks and the number of shuffles. Experimental results show that our algorithm is fast, applicable to both permutation models, and robust to choice of measurement matrix. We also test our algorithm on several real datasets for the ‘linked linear regression’ problem and show superior performance compared to baseline methods. 
    more » « less
    Free, publicly-accessible full text available February 4, 2026
  5. The problem of finding suitable point embedding or geometric configurations given only Euclidean distance information of point pairs arises both as a core task and as a sub-problem in a variety of machine learning applications. In this paper, we aim to solve this problem given a minimal number of distance samples. To this end, we leverage continuous and non-convex rank minimization formulations of the problem and establish a local convergence guarantee for a variant of iteratively reweighted least squares (IRLS), which applies if a minimal random set of observed distances is provided. As a technical tool, we establish a restricted isometry property (RIP) restricted to a tangent space of the manifold of symmetric rank- matrices given random Euclidean distance measurements, which might be of independent interest for the analysis of other non-convex approaches. Furthermore, we assess data efficiency, scalability and generalizability of different reconstruction algorithms through numerical experiments with simulated data as well as real-world data, demonstrating the proposed algorithm's ability to identify the underlying geometry from fewer distance samples compared to the state-of-the-art. The Matlab code can be found at https://github.com/ipsita-ghosh-1/EDG-IRLS. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  6. Discriminative features extracted from the sparse coding model have been shown to perform well for classification. Recent deep learning architectures have further improved reconstruction in inverse problems by considering new dense priors learned from data. We propose a novel dense and sparse coding model that integrates both representation capability and discriminative features. The model studies the problem of recovering a dense vector x and a sparse vector u given measurement of the form y = Ax+Bu. Our first analysis relies on a geometric condition, specifically the minimal angle between the spanning subspaces of matrices A and B, which ensures a unique solution to the model. The second analysis shows that, under some conditions on A and B, a convex program recovers the dense and sparse components. We validate the effectiveness of the model on simulated data and propose a dense and sparse autoencoder (DenSaE) tailored to learning the dictionaries from the dense and sparse model. We demonstrate that (i) DenSaE denoises natural images better than architectures derived from the sparse coding model (Bu), (ii) in the presence of noise, training the biases in the latter amounts to implicitly learning the Ax + Bu model, (iii) A and B capture low- and high-frequency contents, respectively, and (iv) compared to the sparse coding model, DenSaE offers a balance between discriminative power and representation. 
    more » « less
  7. We study the problem of determining the configuration of n points by using their distances to m nodes, referred to as anchor nodes. One sampling scheme is Nystrom sampling, which assumes known distances between the anchors and between the anchors and the n points, while the distances among the n points are unknown. For this scheme, a simple adaptation of the Nystrom method, which is often used for kernel approximation, is a viable technique to estimate the configuration of the anchors and the n points. In this manuscript, we propose a modified version of Nystrom sampling, where the distances from every node to one central node are known, but all other distances are incomplete. In this setting, the standard Nystrom approach is not applicable, necessitating an alternative technique to estimate the configuration of the anchors and the n points. We show that this problem can be framed as the recovery of a low-rank submatrix of a Gram matrix. Using synthetic and real data, we demonstrate that the proposed approach can exactly recover configurations of points given sufficient distance samples. This underscores that, in contrast to methods that rely on global sampling of distance matrices, the task of estimating the configuration of points can be done efficiently via structured sampling with well-chosen reliable anchors. Finally, our main analysis is grounded in a specific centering of the points. With this in mind, we extend previous work in Euclidean distance geometry by providing a general dual basis approach for points centered anywhere. 
    more » « less
  8. High-dimensional data is commonly encountered in various applications, including genomics, as well as image and video processing. Analyzing, computing, and visualizing such data pose significant challenges. Feature extraction methods are crucial in addressing these challenges by obtaining compressed representations that are suitable for analysis and downstream tasks. One effective technique along these lines is sparse coding, which involves representing data as a sparse linear combination of a set of exemplars. In this study, we propose a local sparse coding framework within the context of a classification problem. The objective is to predict the label of a given data point based on labeled training data. The primary optimization problem encourages the representation of each data point using nearby exemplars. We leverage the optimized sparse representation coefficients to predict the label of a test data point by assessing its similarity to the sparse representations of the training data. The proposed framework is computationally efficient and provides interpretable sparse representations. To illustrate the practicality of our proposed framework, we apply it to agriculture for the classification of crop diseases. 
    more » « less
  9. Wireless sensor networks play a pivotal role in a myriad of applications, including agriculture, health monitoring, tracking and structural health monitoring. One crucial aspect of these applications involves accurately determining the positions of the sensors. In this paper, we study a novel Nystrom based sampling protocol in which a selected group of anchor nodes, with known locations, establish communication with only a subset of the remaining sensor nodes. Leveraging partial distance information, we present an efficient algorithm for estimating sensor locations. To demonstrate the effectiveness of our approach, we provide empirical results using synthetic data and underscore the practical advantages of our sampling technique for precision agriculture. 
    more » « less
  10. Classical multidimensional scaling (CMDS) is a technique that embeds a set of objects in a Euclidean space given their pairwise Euclidean distances. The main part of CMDS involves double centering a squared distance matrix and using a truncated eigendecomposition to recover the point coordinates. In this paper, motivated by a study in Euclidean distance geometry, we explore a dual basis approach to CMDS. We give an explicit formula for the dual basis vectors and fully characterize the spectrum of an essential matrix in the dual basis framework. We make connections to a related problem in metric nearness. 
    more » « less