Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the distortion of one-sided and two-sided matching problems on the line. In the one-sided case, n agents need to be matched to n items, and each agent's cost in a matching is their distance from the item they were matched to. We propose an algorithm that is provided only with ordinal information regarding the agents' preferences (each agent's ranking of the items from most- to least-preferred) and returns a matching aiming to minimize the social cost with respect to the agents' true (cardinal) costs. We prove that our algorithm simultaneously achieves the best-possible approximation of 3 (known as distortion) with respect to a variety of social cost measures which include the utilitarian and egalitarian social cost. In the two-sided case, where the agents need be matched to n other agents and both sides report their ordinal preferences over each other, we show that it is always possible to compute an optimal matching. In fact, we show that this optimal matching can be achieved using even less information, and we provide bounds regarding the sufficient number of queries.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Azar, Yossi; Panigrahi, Debmalya (Ed.)We provide the first analysis of (deferred acceptance) clock auctions in the learning-augmented framework. These auctions satisfy a unique list of very appealing properties, including obvious strategyproofness, transparency, and unconditional winner privacy, making them particularly well-suited for real-world applications. However, early work that evaluated their performance from a worst-case analysis perspective concluded that no deterministic clock auction with n bidders can achieve a O (log1-∈ n ) approximation of the optimal social welfare for a constant ∈ > 0, even in very simple settings. This overly pessimistic impossibility result heavily depends on the assumption that the designer has no information regarding the bidders’ values. Leveraging the learning-augmented framework, we instead consider a designer equipped with some (machine-learned) advice regarding the optimal solution; this advice can provide useful guidance if accurate, but it may be unreliable. Our main results are learning-augmented clock auctions that use this advice to achieve much stronger performance guarantees whenever the advice is accurate (known as consistency), while maintaining worst-case guarantees even if this advice is arbitrarily inaccurate (known as robustness ). Our first clock auction achieves the best of both worlds: (1 + ∈ )-consistency for any desired constant ∈ > 0 and O (log n ) robustness; we also extend this auction to achieve error tolerance. We then consider a much stronger notion of consistency, which we refer to as consistency∞ and provide an auction that achieves a near-optimal trade-off between consistency∞ and robustness. Finally, using our impossibility results regarding this trade-off, we prove lower bounds on the “cost of smoothness,” i.e., on the robustness that is achievable if we also require that the performance of the auction degrades smoothly as a function of the prediction error.more » « lessFree, publicly-accessible full text available January 28, 2026
-
Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)In the strategic facility location problem, a set of agents report their locations in a metric space and the goal is to use these reports to open a new facility, minimizing an aggregate distance measure from the agents to the facility. However, agents are strategic and may misreport their locations to influence the facility’s placement in their favor. The aim is to design truthful mechanisms, ensuring agents cannot gain by misreporting. This problem was recently revisited through the learning-augmented framework, aiming to move beyond worst-case analysis and design truthful mechanisms that are augmented with (machine-learned) predictions. The focus of this prior work was on mechanisms that are deterministic and augmented with a prediction regarding the optimal facility location. In this paper, we provide a deeper understanding of this problem by exploring the power of randomization as well as the impact of different types of predictions on the performance of truthful learning-augmented mechanisms. We study both the single-dimensional and the Euclidean case and provide upper and lower bounds regarding the achievable approximation of the optimal egalitarian social cost.more » « less
An official website of the United States government

Full Text Available