skip to main content

Search for: All records

Award ID contains: 2212176

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks have witnessed huge successes in many challenging prediction tasks and yet they often suffer from out-of-distribution (OoD) samples, misclassifying them with high confidence. Recent advances show promising OoD detection performance for centralized training, and however, OoD detection in federated learning (FL) is largely overlooked, even though many security sensitive applications such as autonomous driving and voice recognition authorization are commonly trained using FL for data privacy concerns. The main challenge that prevents previous state-of-the-art OoD detection methods from being incorporated to FL is that they require large amount of real OoD samples. However, in real-world scenarios, such large-scale OoD training data can be costly or even infeasible to obtain, especially for resource-limited local devices. On the other hand, a notorious challenge in FL is data heterogeneity where each client collects non-identically and independently distributed (non-iid) data. We propose to take advantage of such heterogeneity and turn the curse into a blessing that facilitates OoD detection in FL. The key is that for each client, non-iid data from other clients (unseen external classes) can serve as an alternative to real OoD samples. Specifically, we propose a novel Federated Out-of-Distribution Synthesizer (FOSTER), which learns a class-conditional generator to synthesize virtual external-class OoD samples, and maintains data confidentiality and communication efficiency required by FL. Experimental results show that our method outperforms the state-of-the-art by 2.49%, 2.88%, 1.42% AUROC, and 0.01%, 0.89%, 1.74% ID accuracy, on CIFAR-10, CIFAR-100, and STL10, respectively. 
    more » « less
    Free, publicly-accessible full text available April 30, 2024
  2. Increasing concerns have been raised on deep learning fairness in recent years. Existing fairness-aware machine learning methods mainly focus on the fairness of in-distribution data. However, in real-world applications, it is common to have a distribution shift between the training and test data. In this paper, we first show that the fairness achieved by existing methods can be easily broken by slight distribution shifts. To solve this problem, we propose a novel fairness learning method termed CUrvature MAtching (CUMA), which can achieve robust fairness generalizable to unseen domains with unknown distributional shifts. Specifically, CUMA enforces the model to have similar generalization ability on the majority and minority groups, by matching the loss curvature distributions of the two groups. We evaluate our method on three popular fairness datasets. Compared with existing methods, CUMA achieves superior fairness under unseen distribution shifts, without sacrificing either the overall accuracy or the in-distribution fairness. 
    more » « less
  3. Transfer learning from the model trained on large datasets to customized downstream tasks has been widely used as the pre-trained model can greatly boost the generalizability. However, the increasing sizes of pre-trained models also lead to a prohibitively large memory footprints for downstream transferring, making them unaffordable for personal devices. Previous work recognizes the bottleneck of the footprint to be the activation, and hence proposes various solutions such as injecting specific lite modules. In this work, we present a novel memory-efficient transfer framework called Back Razor, that can be plug-and-play applied to any pre-trained network without changing its architecture. The key idea of Back Razor is asymmetric sparsifying: pruning the activation stored for back-propagation, while keeping the forward activation dense. It is based on the observation that the stored activation, that dominates the memory footprint, is only needed for backpropagation. Such asymmetric pruning avoids affecting the precision of forward computation, thus making more aggressive pruning possible. Furthermore, we conduct the theoretical analysis for the convergence rate of Back Razor, showing that under mild conditions, our method retains the similar convergence rate as vanilla SGD. Extensive transfer learning experiments on both Convolutional Neural Networks and Vision Transformers with classification, dense prediction, and language modeling tasks show that Back Razor could yield up to 97% sparsity, saving 9.2x memory usage, without losing accuracy. The code is available at: 
    more » « less
  4. Deep neural networks (DNNs) are vulnerable to backdoor attacks. Previous works have shown it extremely challenging to unlearn the undesired backdoor behavior from the network, since the entire network can be affected by the backdoor samples. In this paper, we propose a brand-new backdoor defense strategy, which makes it much easier to remove the harmful influence of backdoor samples from the model. Our defense strategy, Trap and Replace, consists of two stages. In the first stage, we bait and trap the backdoors in a small and easy-to-replace subnetwork. Specifically, we add an auxiliary image reconstruction head on top of the stem network shared with a light-weighted classification head. The intuition is that the auxiliary image reconstruction task encourages the stem network to keep sufficient low-level visual features that are hard to learn but semantically correct, instead of overfitting to the easy-to-learn but semantically incorrect backdoor correlations. As a result, when trained on backdoored datasets, the backdoors are easily baited towards the unprotected classification head, since it is much more vulnerable than the shared stem, leaving the stem network hardly poisoned. In the second stage, we replace the poisoned light-weighted classification head with an untainted one, by re-training it from scratch only on a small holdout dataset with clean samples, while fixing the stem network. As a result, both the stem and the classification head in the final network are hardly affected by backdoor training samples. We evaluate our method against ten different backdoor attacks. Our method outperforms previous state-of-the-art methods by up to 20.57%, 9.80%, and 13.72% attack success rate and on-average 3.14%, 1.80%, and 1.21% clean classification accuracy on CIFAR10, GTSRB, and ImageNet-12, respectively. Code is available at 
    more » « less