- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Nelson, Alexander (2)
-
Andrews, David (1)
-
Apon, Daniel (1)
-
Dachman-Soled, Dana (1)
-
Dang, Thinh (1)
-
Fahr, Michael (1)
-
Genkin, Daniel (1)
-
Huang, Miaoqing (1)
-
Kippen, Hunter (1)
-
Kwong, Andrew (1)
-
Lichtinger, Jacob (1)
-
Mahzabin, Mayeesha (1)
-
Perlner, Ray (1)
-
Teague, Tristen (1)
-
Yerukhimovich, Arkady (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Post-quantum cryptography (PQC) refers to cryptographic algorithms that are thought to be secure against a cryptanalytic attack by a quantum computer. Before PQC algorithms can be widely deployed to replace the current standards such as the RSA algorithm, they need to be rigorously evaluated theoretically and practically. In this work, we present a cloud-based infrastructure being developed for performing side-channel analysis on PQC algorithms for the research community. Multiple types of side-channel attacks, such as timing attacks, power attacks, and electromagnetic attacks can be applied on different types of devices, such as FPGA devices and microcontrollers. An automated tool flow is being developed that can run executables on the target devices, collect traces (e.g., power consumption waveforms and electromagnetic radiation signals), perform leakage assessment (using Test Vector Leakage Assessment), and generate analysis reports. Remote users access the infrastructure through a web portal by uploading the hardware or software implementations of cryptographic algorithms. Side-channel attack and leakage analysis are performed on the given implementation. Finally, the user is informed for downloading the analysis report from the portal.more » « less
-
Fahr, Michael; Kippen, Hunter; Kwong, Andrew; Dang, Thinh; Lichtinger, Jacob; Dachman-Soled, Dana; Genkin, Daniel; Nelson, Alexander; Perlner, Ray; Yerukhimovich, Arkady; et al (, Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security)
An official website of the United States government

Full Text Available