skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2218748

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Disruptions, such as closures of businesses during pandemics, not only affect businesses and amenities directly but also influence how people move, spreading the impact to other businesses and increasing the overall economic shock. However, it is unclear how much businesses depend on each other during disruptions. Leveraging human mobility data and same-day visits in five US cities, we quantify dependencies between points of interest encompassing businesses, stores and amenities. We find that dependency networks computed from human mobility exhibit significantly higher rates of long-distance connections and biases towards specific pairs of point-of-interest categories. We show that using behaviour-based dependency relationships improves the predictability of business resilience during shocks by around 40% compared with distance-based models, and that neglecting behaviour-based dependencies can lead to underestimation of the spatial cascades of disruptions. Our findings underscore the importance of measuring complex relationships in patterns of human mobility to foster urban economic resilience to shocks. 
    more » « less
    Free, publicly-accessible full text available December 23, 2025
  2. Abstract Poor diets are a leading cause of morbidity and mortality. Exposure to low-quality food environments saturated with fast food outlets is hypothesized to negatively impact diet. However, food environment research has predominantly focused on static food environments around home neighborhoods and generated mixed findings. In this work, we leverage population-scale mobility data in the U.S. to examine 62M people’s visits to food outlets and evaluate how food choice is influenced by the food environments people are exposed to as they move through their daily routines. We find that a 10% increase in exposure to fast food outlets in mobile environments increases individuals’ odds of visitation by 20%. Using our results, we simulate multiple policy strategies for intervening on food environments to reduce fast-food outlet visits. This analysis suggests that optimal interventions are informed by spatial, temporal, and behavioral features and could have 2x to 4x larger effect than traditional interventions focused on home food environments. 
    more » « less
  3. Abstract Despite the global impact of the coronavirus disease 2019 pandemic, the question of whether mandated interventions have similar economic and public health effects as spontaneous behavioural change remains unresolved. Addressing this question, and understanding differential effects across socioeconomic groups, requires building quantitative and fine-grained mechanistic models. Here we introduce a data-driven, granular, agent-based model that simulates epidemic and economic outcomes across industries, occupations and income levels. We validate the model by reproducing key outcomes of the first wave of coronavirus disease 2019 in the New York metropolitan area. The key mechanism coupling the epidemic and economic modules is the reduction in consumption due to fear of infection. In counterfactual experiments, we show that a similar trade-off between epidemic and economic outcomes exists both when individuals change their behaviour due to fear of infection and when non-pharmaceutical interventions are imposed. Low-income workers, who perform in-person occupations in customer-facing industries, face the strongest trade-off. 
    more » « less
  4. Abstract The characteristics of food environments people are exposed to, such as the density of fast food (FF) outlets, can impact their diet and risk for diet-related chronic disease. Previous studies examining the relationship between food environments and nutritional health have produced mixed findings, potentially due to the predominant focus on static food environments around people’s homes. As smartphone ownership increases, large-scale data on human mobility (i.e., smartphone geolocations) represents a promising resource for studying dynamic food environments that people have access to and visit as they move throughout their day. This study investigates whether mobility data provides meaningful indicators of diet, measured as FF intake, and diet-related disease, evaluating its usefulness for food environment research. Using a mobility dataset consisting of 14.5 million visits to geolocated food outlets in Los Angeles County (LAC) across a representative sample of 243,644 anonymous and opted-in adult smartphone users in LAC, we construct measures of visits to FF outlets aggregated over users living in neighborhood. We find that the aggregated measures strongly and significantly correspond to self-reported FF intake, obesity, and diabetes in a diverse, representative sample of 8,036 LAC adults included in a population health survey carried out by the LAC Department of Public Health. Visits to FF outlets were a better predictor of individuals’ obesity and diabetes than their self-reported FF intake, controlling for other known risks. These findings suggest mobility data represents a valid tool to study people’s use of dynamic food environments and links to diet and health. 
    more » « less
  5. Abstract Urbanization and its problems require an in-depth and comprehensive understanding of urban dynamics, especially the complex and diversified lifestyles in modern cities. Digitally acquired data can accurately capture complex human activity, but it lacks the interpretability of demographic data. In this paper, we study a privacy-enhanced dataset of the mobility visitation patterns of 1.2 million people to 1.1 million places in 11 metro areas in the U.S. to detect the latent mobility behaviors and lifestyles in the largest American cities. Despite the considerable complexity of mobility visitations, we found that lifestyles can be automatically decomposed into only 12 latent interpretable activity behaviors on how people combine shopping, eating, working, or using their free time. Rather than describing individuals with a single lifestyle, we find that city dwellers’ behavior is a mixture of those behaviors. Those detected latent activity behaviors are equally present across cities and cannot be fully explained by main demographic features. Finally, we find those latent behaviors are associated with dynamics like experienced income segregation, transportation, or healthy behaviors in cities, even after controlling for demographic features. Our results signal the importance of complementing traditional census data with activity behaviors to understand urban dynamics. 
    more » « less
  6. Free, publicly-accessible full text available December 1, 2025
  7. Diversity of physical encounters in urban environments is known to spur economic productivity while also fostering social capital. However, mobility restrictions during the pandemic have forced people to reduce urban encounters, raising questions about the social implications of behavioral changes. In this paper, we study how individual income diversity of urban encounters changed during the pandemic, using a large-scale, privacy-enhanced mobility dataset of more than one million anonymized mobile phone users in Boston, Dallas, Los Angeles, and Seattle, across three years spanning before and during the pandemic. We find that the diversity of urban encounters has substantially decreased (by 15% to 30%) during the pandemic and has persisted through late 2021, even though aggregated mobility metrics have recovered to pre-pandemic levels. Counterfactual analyses show that behavioral changes including lower willingness to explore new places further decreased the diversity of encounters in the long term. Our findings provide implications for managing the trade-off between the stringency of COVID-19 policies and the diversity of urban encounters as we move beyond the pandemic. 
    more » « less