skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2222322

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We collected this data to better understand the timing of peak benthic cyanobacterial mat occurrence (specifically taxa associated with anatoxin production, Microcoleus and Anabaena) and mat anatoxin concentrations in rivers. We sampled in northern California on the South Fork Eel, Salmon, and Russian Rivers biweekly in 2022, and the Salmon River biweekly and South Fork Eel weekly in 2023. During each sampling event, we conducted benthic cover surveys, measured in-situ water quality parameters (temperature, pH, dissolved oxygen, conductivity), and collected surface water samples and targeted cyanobacteria samples. In 2022 on all rivers and in 2023 at the Salmon River, we also collected distributed non-targeted periphyton samples to characterize full-reach community compositions. All sampling was completed in 150-m reaches upstream of sensors recording continuous dissolved oxygen, conductivity, and temperature data. We analyzed surface water samples for nitrate, ammonium, soluble reactive phosphate, total dissolved carbon, and dissolved organic carbon. We also analyzed surface water samples from 2022 for major anions (Cl, SO4, Br) and cations (Na, K, Mg, Ca). Targeted-cyanobacteria and non-target periphyton samples were analyzed for anatoxins, relative abundance of algal taxa (via microscopy), ash-free dry mass, and chlorophyll-a. To estimate mean river depth within the dissolved oxygen footprint upstream of sensors, we kayaked portions of the river and collected river depth measurements. We also measured discharge at each river excluding the Salmon River (due to high discharge) and completed pebble counts at the South Fork Eel River to obtain sediment grain size distributions. 
    more » « less
  2. Free, publicly-accessible full text available April 1, 2026
  3. The growth of the toxic Genera Microcoleus on different bottom substrates was presented. The sampling was performed in the Virgin River of Zion's National Park. 
    more » « less
  4. Cyanobacterium Microcoleus anatoxicus, isolated from a coastal stream in northern California, produces both anatoxin-a (ATX) and dihydroanatoxin- a (dhATX), responsible for dog deaths, but its environmental preferences are unknown. We tested the effect of environmentally relevant stressors, e.g., salinity enrichment and nitrogen (N) depletion, on mat formation and toxicity of M. anatoxicus during the stationary growth phase in culture. Microcoleus anatoxicus showed broad salinity tolerance and the potential to enter estuaries and produce toxins in mesohaline conditions. Maximum growth was observed in oligohaline waters with salinity of 4.6 ppt. Moderate salinity stress (up to 7.8 ppt) did not affect dhATX production significantly. In contrast, higher salinity above 9.3 ppt had a detrimental effect on cell growth and significantly suppressed dhATX production. Formation of a common polysaccharide sheath covering multiple filaments was characteristic with increased salinity and may provide protection against osmotic stress. Microcoleus anatoxicus grown for 40 days in N-depleted medium formed mats with significantly elevated dhATX and increased ATX concentrations. Phycobilisome degradation was a possible acclimation response to N-limitation, as indicated by distinctly keritomized and pale cells in these cultures. In both experiments, most of the anatoxins were extracellular,probably due to toxin leaking during the stationary growth phase. 
    more » « less
  5. This was a conference presentation. The presentation included an overview about the benthic toxic mats, research objectives of this project and the modeling framework. 
    more » « less