Abstract Due to the flocculation process, suspended mud aggregates carried by rivers to the coastal ocean are thought to undergo changes in size and shape in response to environmental drivers such as turbulence, sediment concentration, organic matter (OM), and salinity. Some have assumed that salt is necessary for floc formation, and that mud, therefore, reaches the estuary unflocculated. Yet mud flocs exist in freshwater systems long before the estuarine zone, likely due to the presence of OM acting as a floc‐promoting binder. Therefore, it is important to consider how salinity affects flocculation, if at all, in the presence of OM. Here, we used experiments to examine the flocculation of a natural mud with and without OM. Results showed that the rate of floc growth and equilibrium size both increase with salinity regardless of the presence or absence of OM. However, the response of both to salinity was stronger when OM was present. In deionized water, natural sediment with OM was seen to produce large flocs. However, the size distribution of the suspension tended to be bimodal. With the addition of salt, increasing amounts of unflocculated material became bound within flocs, producing a more unimodal size distribution. Here, the enhancing effects of salt were noticeable at even 0.5 ppt, and increases in salinity past 3–5 ppt only marginally increased the floc growth rate and final size. Data from the experiment were used to develop a salinity‐dependent model to account for changes in floc growth rate and equilibrium size.
more »
« less
Effect of salinity stress and nitrogen depletion on growth, morphology and toxin production of freshwater cyanobacterium Microcoleus anatoxicus Stancheva & Conklin
Cyanobacterium Microcoleus anatoxicus, isolated from a coastal stream in northern California, produces both anatoxin-a (ATX) and dihydroanatoxin- a (dhATX), responsible for dog deaths, but its environmental preferences are unknown. We tested the effect of environmentally relevant stressors, e.g., salinity enrichment and nitrogen (N) depletion, on mat formation and toxicity of M. anatoxicus during the stationary growth phase in culture. Microcoleus anatoxicus showed broad salinity tolerance and the potential to enter estuaries and produce toxins in mesohaline conditions. Maximum growth was observed in oligohaline waters with salinity of 4.6 ppt. Moderate salinity stress (up to 7.8 ppt) did not affect dhATX production significantly. In contrast, higher salinity above 9.3 ppt had a detrimental effect on cell growth and significantly suppressed dhATX production. Formation of a common polysaccharide sheath covering multiple filaments was characteristic with increased salinity and may provide protection against osmotic stress. Microcoleus anatoxicus grown for 40 days in N-depleted medium formed mats with significantly elevated dhATX and increased ATX concentrations. Phycobilisome degradation was a possible acclimation response to N-limitation, as indicated by distinctly keritomized and pale cells in these cultures. In both experiments, most of the anatoxins were extracellular,probably due to toxin leaking during the stationary growth phase.
more »
« less
- Award ID(s):
- 2222322
- PAR ID:
- 10569344
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Hydrobiologia
- ISSN:
- 0018-8158
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Clay is the main component that contributes to sediment cohesiveness. Salinity impacts its transport, which controls the electrochemical force among the sediment grains. Here, we quantify the impacts of salinity on the erosion threshold, yield stress, and the microstructures of a fluorescently labeled smectite clay, laponite, by combining flume experiments, rheometer measurements, and macro‐ and microscopic imaging. We show that the critical shear stress for clay erosion,τb,crit, increases by one order of magnitude with increasing salinity when salinity <1.5 ppt and slightly decreases when salinity >1.5 ppt showing a weaker dependency upon salinity. We further show that the yield stress,τy, of the clay remains roughly a constant at salinity less than 1.5 ppt and decreases by over one order of magnitude at salinity larger than 1.5 ppt. This change in the dependency ofτb,critand yield stress on salinity corresponds to a change in the gelatinous state of clay, from gel‐like structures to phase‐separated structures as salinity increases. Our results provide a quantitative characterization of the dependency of clay erosion threshold and yield stress on salinity and highlight the importance of the clay gelatinous state in controlling clay transport.more » « less
-
Abstract The rapid human‐driven changes in the environment during the Anthropocene have placed extreme stress on many plants and animals. Beneficial interactions with microorganisms may be crucial for ameliorating these stressors and facilitating the ecosystem services host organisms provide. Foliar endophytes, microorganisms that reside within leaves, are found in essentially all plants and can provide important benefits (e.g., enhanced drought tolerance or resistance to herbivory). However, it remains unclear how important the legacy effects of the abiotic stressors that select on these microbiomes are for affecting the degree of stress amelioration provided to their hosts. To elucidate foliar endophytes' role in host‐plant salt tolerance, especially if salinity experienced in the field selects for endophytes that are better suited to improve the salt tolerance of their hosts, we combined field collections of 90 endophyte communities from 30 sites across the coastal Everglades with a manipulative growth experiment assessing endophyte inoculation effects on host‐plant performance. Specifically, we grew >350 red mangrove (Rhizophora mangle) seedlings in a factorial design that manipulated the salinity environment the seedlings experienced (freshwater vs. saltwater), the introduction of field‐collected endophytes (live vs. sterilized inoculum), and the legacy of salinity stress experienced by these introduced endophytes, ranging from no salt stress (0 parts per thousand [ppt] salinity) to high salt stress (40 ppt) environments. We found that inoculation with field‐collected endophytes significantly increased mangrove performance across almost all metrics examined (15%–20% increase on average), and these beneficial effects typically occurred when the endophytes were grown in saltwater. Importantly, our study revealed the novel result that endophyte‐conferred salinity tolerance depended on microbiome salinity legacy in a key coastal foundation species. Salt‐stressed mangroves inoculated with endophyte microbiomes from high‐salinity environments performed, on average, as well as plants grown in low‐stress freshwater, while endophytes from freshwater environments did not relieve host salinity stress. Given the increasing salinity stress imposed by sea level rise and the importance of foundation species like mangroves for ecosystem services, our results indicate that consideration of endophytic associations and their salinity legacy may be critical for the successful restoration and management of coastal habitats.more » « less
-
Abstract Coastal ecosystems are exposed to saltwater intrusion but differential effects on biogeochemical cycling are uncertain. We tested how elevated salinity and phosphorus (P) individually and interactively affect microbial activities and biogeochemical cycling in freshwater and brackish wetland soils. In experimental mesocosms, we added crossed gradients of elevated concentrations of soluble reactive P (SRP) (0, 20, 40, 60, 80 μg/L) and salinity (0, 4, 7, 12, 16 ppt) to freshwater and brackish peat soils (10, 14, 17, 22, 26 ppt) for 35 d. We quantified changes in water chemistry [dissolved organic carbon (DOC), ammonium (), nitrate + nitrite (N + N), SRP concentrations], soil microbial extracellular enzyme activities, respiration rates, microbial biomass C, and soil chemistry (%C, %N, %P, C:N, C:P, N:P). DOC, , and SRP increased in freshwater but decreased in brackish mesocosms with elevated salinity. DOC similarly decreased in brackish mesocosms with added P, and N + N decreased with elevated salinity in both freshwater and brackish mesocosms. In freshwater soils, water column P uptake occurred only in the absence of elevated salinity and when P was above 40 µg/L. Freshwater microbial EEAs, respiration rates, and microbial biomass C were consistently higher compared to those from brackish soils, and soil phosphatase activities and microbial respiration rates in freshwater soils decreased with elevated salinity. Elevated salinity increased arylsulfatase activities and microbial biomass C in brackish soils, and elevated P increased microbial respiration rates in brackish soils. Freshwater soil %C, %N, %P decreased and C:P and N:P increased with elevated salinity. Elevated P increased %C and C:N in freshwater soils and increased %P but decreased C:P and N:P in brackish soils. Freshwater soils released more C and nutrients than brackish soils when exposed to elevated salinity, and both soils were less responsive to elevated P than expected. Freshwater soils became more nutrient‐depleted with elevated salinity, whereas brackish soils were unaffected by salinity but increased P uptake. Microbial activities in freshwater soils were inhibited by elevated salinity and unaffected by added P, but brackish soil microbial activities slightly increased with elevated salinity and P.more » « less
-
Lauritano, Chiara; Ianora, Adrianna (Ed.)Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host–virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host–virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.more » « less