skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2224718

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The configuration balancing problem with stochastic requests generalizes well-studied resource allocation problems such as load balancing and virtual circuit routing. There are givenmresources andnrequests; each request has multiple possibleconfigurations, each of which increases the load of each resource by some amount. The goal is to select one configuration for each request to minimize themakespan: the load of the most-loaded resource. In the stochastic setting, the amount by which a configuration increases the resource load is uncertain until the configuration is chosen, but we are given a probability distribution. We develop both offline and online algorithms for configuration balancing with stochastic requests. When the requests are known offline, we give a non-adaptive policy for configuration balancing with stochastic requests that$$O(\frac{\log m}{\log \log m})$$ O ( log m log log m ) -approximates the optimal adaptive policy, which matches a known lower bound for the special case of load balancing on identical machines. When requests arrive online in a list, we give a non-adaptive policy that is$$O(\log m)$$ O ( log m ) competitive. Again, this result is asymptotically tight due to information-theoretic lower bounds for special cases (e.g., for load balancing on unrelated machines). Finally, we show how to leverage adaptivity in the special case of load balancing onrelatedmachines to obtain a constant-factor approximation offline and an$$O(\log \log m)$$ O ( log log m ) -approximation online. A crucial technical ingredient in all of our results is a new structural characterization of the optimal adaptive policy that allows us to limit the correlations between its decisions. 
    more » « less
  2. Free, publicly-accessible full text available December 1, 2025
  3. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    We initiate the study of centralized algorithms for welfare-maximizing allocation of goods to buyers subject to average-value constraints. We show that this problem is NP-hard to approximate beyond a factor of e/(e-1), and provide a 4e/(e-1)-approximate offline algorithm. For the online setting, we show that no non-trivial approximations are achievable under adversarial arrivals. Under i.i.d. arrivals, we present a polytime online algorithm that provides a constant approximation of the optimal (computationally-unbounded) online algorithm. In contrast, we show that no constant approximation of the ex-post optimum is achievable by an online algorithm. 
    more » « less