skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2229036

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract High-throughput and cost-efficient fabrication of intricate nanopatterns using top-down approaches remains a significant challenge. To overcome this limitation, advancements are required across various domains: patterning techniques, real-time and post-process metrology, data analysis, and, crucially, process control. We review recent progress in continuous, top-down nanomanufacturing, with a particular focus on data-driven process control strategies. We explore existing Machine Learning (ML)-based approaches for implementing key aspects of continuous process control, encompassing high-speed metrology balancing speed and resolution, modeling relationships between process parameters and yield, multimodal data fusion for comprehensive process monitoring, and control law development for real-time process adjustments. To assess the applicability of established control strategies in continuous settings, we compare roll-to-roll (R2R) manufacturing, a paradigmatic continuous multistage process, with the well-established batch-based semiconductor manufacturing. Finally, we outline promising future research directions for achieving high-quality, cost-effective, top-down nanomanufacturing and particularly R2R nanomanufacturing at scale. 
    more » « less
  2. Free, publicly-accessible full text available July 14, 2026
  3. Free, publicly-accessible full text available July 1, 2026
  4. Free, publicly-accessible full text available May 30, 2026
  5. Liddle, J Alexander; Ruiz, Ricardo (Ed.)