skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2230795

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With a manifold growth in the scale and intricacy of systems, the challenges of parametric misspecification become pronounced. These concerns are further exacerbated in compositional settings, which emerge in problems complicated by modeling risk and robustness. In “Data-Driven Compositional Optimization in Misspecified Regimes,” the authors consider the resolution of compositional stochastic optimization problems, plagued by parametric misspecification. In considering settings where such misspecification may be resolved via a parallel learning process, the authors develop schemes that can contend with diverse forms of risk, dynamics, and nonconvexity. They provide asymptotic and rate guarantees for unaccelerated and accelerated schemes for convex, strongly convex, and nonconvex problems in a two-level regime with extensions to the multilevel setting. Surprisingly, the nonasymptotic rate guarantees show no degradation from the rate statements obtained in a correctly specified regime and the schemes achieve optimal (or near-optimal) sample complexities for general T-level strongly convex and nonconvex compositional problems. 
    more » « less