skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2237031

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 30, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo couplingJ_K J K at fixed doping x. At large positiveJ_K J K , we confirm the expected conventional Luttinger liquid phase with2k_F=\frac{1+x}{2} 2 k F = 1 + x 2 (in units of2\pi 2 π ), an analogue of the heavy Fermi liquid (HFL) in the higher dimension. In theJ_K ≤ 0 J K 0 side, our simulation finds the existence of a fractional Luttinger liquid (LL\star ) phase with2k_F=\frac{x}{2} 2 k F = x 2 , accompanied by a gapless spin mode originating from localized spin moments, which serves as an analogue of the fractional Fermi liquid (FL\star ) phase in higher dimensions. The LL\star phase becomes unstable and transitions to a spin-gapped Luther-Emery (LE) liquid phase at small positiveJ_K J K . Then we mainly focus on the “critical regime” between the LE phase and the LL phase. Approaching the critical point from the spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin correlation length in real space stays finite and small. For a certain range of doping, in a point (or narrow region) ofJ_K J K , the dynamical spin structure factor obtained through the time-evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum space above a small energy scale (around0.035 J 0.035 J ) that is limited by the TEBD accuracy. All of these results are unexpected for a regular gapless phase (or critical point) described by conformal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite dynamical exponentz=+ z = + . The numerical discovery here may have important implications on our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we propose to simulate the model in a bilayer optical lattice with a potential difference. 
    more » « less