skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical signatures of ultra-local criticality in a one dimensional Kondo lattice model
Heavy fermion criticality has been a long-standing problem in condensed matter physics. Here we study a one-dimensional Kondo lattice model through numerical simulation and observe signatures of local criticality. We vary the Kondo couplingJ_K J K at fixed doping x. At large positiveJ_K J K , we confirm the expected conventional Luttinger liquid phase with2k_F=\frac{1+x}{2} 2 k F = 1 + x 2 (in units of2\pi 2 π ), an analogue of the heavy Fermi liquid (HFL) in the higher dimension. In theJ_K ≤ 0 J K 0 side, our simulation finds the existence of a fractional Luttinger liquid (LL\star ) phase with2k_F=\frac{x}{2} 2 k F = x 2 , accompanied by a gapless spin mode originating from localized spin moments, which serves as an analogue of the fractional Fermi liquid (FL\star ) phase in higher dimensions. The LL\star phase becomes unstable and transitions to a spin-gapped Luther-Emery (LE) liquid phase at small positiveJ_K J K . Then we mainly focus on the “critical regime” between the LE phase and the LL phase. Approaching the critical point from the spin-gapped LE phase, we often find that the spin gap vanishes continuously, while the spin-spin correlation length in real space stays finite and small. For a certain range of doping, in a point (or narrow region) ofJ_K J K , the dynamical spin structure factor obtained through the time-evolving block decimation (TEBD) simulation shows dispersion-less spin fluctuations in a finite range of momentum space above a small energy scale (around0.035 J 0.035 J ) that is limited by the TEBD accuracy. All of these results are unexpected for a regular gapless phase (or critical point) described by conformal field theory (CFT). Instead, they are more consistent with exotic ultra-local criticality with an infinite dynamical exponentz=+ z = + . The numerical discovery here may have important implications on our general theoretical understanding of the strange metals in heavy fermion systems. Lastly, we propose to simulate the model in a bilayer optical lattice with a potential difference.  more » « less
Award ID(s):
2237031
PAR ID:
10574523
Author(s) / Creator(s):
;
Publisher / Repository:
Scipost
Date Published:
Journal Name:
SciPost Physics
Volume:
17
Issue:
2
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ [ 0 , 1 ] k where$$k \ge 2$$ k 2 . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ x 1 , x 2 , , x n through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ i = 1 n | x i - x i + 1 | k 1 / k c k , where$$|x-y|$$ | x - y | is the Euclidean distance betweenxandy, and$$c_k$$ c k is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ x n + 1 x 1 . From the other direction, for every$$k \ge 2$$ k 2 and$$n \ge 2$$ n 2 , there existnpoints in$$[0,1]^k$$ [ 0 , 1 ] k , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ i = 1 n | x i - x i + 1 | k 1 / k = 2 1 / k · k . For the plane, the best constant is$$c_2=2$$ c 2 = 2 and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ c k = 9 2 3 1 / k · k for every$$k \ge 3$$ k 3 and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ c k = 2 1 / k · k , for every$$k \ge 2$$ k 2 . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ c k = 3 5 2 3 1 / k · k or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ c k = 2.91 k ( 1 + o k ( 1 ) ) . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ c 3 2 7 / 6 , which disproves the conjecture for$$k=3$$ k = 3 . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed. 
    more » « less
  2. Abstract The minimum linear ordering problem (MLOP) generalizes well-known combinatorial optimization problems such as minimum linear arrangement and minimum sum set cover. MLOP seeks to minimize an aggregated cost$$f(\cdot )$$ f ( · ) due to an ordering$$\sigma $$ σ of the items (say [n]), i.e.,$$\min _{\sigma } \sum _{i\in [n]} f(E_{i,\sigma })$$ min σ i [ n ] f ( E i , σ ) , where$$E_{i,\sigma }$$ E i , σ is the set of items mapped by$$\sigma $$ σ to indices [i]. Despite an extensive literature on MLOP variants and approximations for these, it was unclear whether the graphic matroid MLOP was NP-hard. We settle this question through non-trivial reductions from mininimum latency vertex cover and minimum sum vertex cover problems. We further propose a new combinatorial algorithm for approximating monotone submodular MLOP, using the theory of principal partitions. This is in contrast to the rounding algorithm by Iwata et al. (in: APPROX, 2012), using Lovász extension of submodular functions. We show a$$(2-\frac{1+\ell _{f}}{1+|E|})$$ ( 2 - 1 + f 1 + | E | ) -approximation for monotone submodular MLOP where$$\ell _{f}=\frac{f(E)}{\max _{x\in E}f(\{x\})}$$ f = f ( E ) max x E f ( { x } ) satisfies$$1 \le \ell _f \le |E|$$ 1 f | E | . Our theory provides new approximation bounds for special cases of the problem, in particular a$$(2-\frac{1+r(E)}{1+|E|})$$ ( 2 - 1 + r ( E ) 1 + | E | ) -approximation for the matroid MLOP, where$$f = r$$ f = r is the rank function of a matroid. We further show that minimum latency vertex cover is$$\frac{4}{3}$$ 4 3 -approximable, by which we also lower bound the integrality gap of its natural LP relaxation, which might be of independent interest. 
    more » « less
  3. Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ a j , 1 x 1 + + a j , k x k = 0 for$$j=1,\dots ,m$$ j = 1 , , m with coefficients$$a_{j,i}\in \mathbb {F}_p$$ a j , i F p . Suppose that$$k\ge 3m$$ k 3 m , that$$a_{j,1}+\dots +a_{j,k}=0$$ a j , 1 + + a j , k = 0 for$$j=1,\dots ,m$$ j = 1 , , m and that every$$m\times m$$ m × m minor of the$$m\times k$$ m × k matrix$$(a_{j,i})_{j,i}$$ ( a j , i ) j , i is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ A F p n of size$$|A|> C\cdot \Gamma ^n$$ | A | > C · Γ n contains a solution$$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ x 1 , , x k A are all distinct. Here,Cand$$\Gamma $$ Γ are constants only depending onp,mandksuch that$$\Gamma Γ < p . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ x 1 , , x k in the solution$$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ x 1 , , x k are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments. 
    more » « less
  4. Abstract Let$$(h_I)$$ ( h I ) denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ I D , the set of dyadic intervals and$$h_I\otimes h_J$$ h I h J denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ( s , t ) h I ( s ) h J ( t ) ,$$I,J\in \mathcal {D}$$ I , J D . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ V ( δ 2 ) of$$h_I\otimes h_J$$ h I h J ,$$I,J\in \mathcal {D}$$ I , J D . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ L p [ 0 , 1 ] or the Hardy spaces$$H^p[0,1]$$ H p [ 0 , 1 ] ,$$1\le p < \infty $$ 1 p < . We say that$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ D ( h I h J ) = d I , J h I h J , where$$d_{I,J}\in \mathbb {R}$$ d I , J R , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ C : V ( δ 2 ) V ( δ 2 ) given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ C h I h J = h I h J if$$|I|\le |J|$$ | I | | J | , and$$\mathcal {C} h_I\otimes h_J = 0$$ C h I h J = 0 if$$|I| > |J|$$ | I | > | J | , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) , there exist$$\lambda ,\mu \in \mathbb {R}$$ λ , μ R such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ λ C + μ ( Id - C ) approximately 1-projectionally factors through D , i.e., for all$$\eta > 0$$ η > 0 , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ Id ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ A · B = 1 and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ λ C + μ ( Id - C ) - A D B < η . Additionally, if$$\mathcal {C}$$ C is unbounded onX(Y), then$$\lambda = \mu $$ λ = μ and then$${{\,\textrm{Id}\,}}$$ Id either factors throughDor$${{\,\textrm{Id}\,}}-D$$ Id - D
    more » « less
  5. Abstract We consider the problem of covering multiple submodular constraints. Given a finite ground setN, a weight function$$w: N \rightarrow \mathbb {R}_+$$ w : N R + ,rmonotone submodular functions$$f_1,f_2,\ldots ,f_r$$ f 1 , f 2 , , f r overNand requirements$$k_1,k_2,\ldots ,k_r$$ k 1 , k 2 , , k r the goal is to find a minimum weight subset$$S \subseteq N$$ S N such that$$f_i(S) \ge k_i$$ f i ( S ) k i for$$1 \le i \le r$$ 1 i r . We refer to this problem asMulti-Submod-Coverand it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$ r = 1 Multi-Submod-Covergeneralizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced toSubmod-SC. A simple greedy algorithm gives an$$O(\log (kr))$$ O ( log ( k r ) ) approximation where$$k = \sum _i k_i$$ k = i k i and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm forMulti-Submod-Coverthat covers each constraint to within a factor of$$(1-1/e-\varepsilon )$$ ( 1 - 1 / e - ε ) while incurring an approximation of$$O(\frac{1}{\epsilon }\log r)$$ O ( 1 ϵ log r ) in the cost. Second, we consider the special case when each$$f_i$$ f i is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems. 
    more » « less