skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real-Time Shock Event Classification From Univariate Structural Response Measurements
Abstract To enable real-time control of next-generation active structures during shock events, there is a need to identify the start of a shock event within microseconds of its initiation. The delayed classification of a shock event may cause damage to the system that could have been prevented with assumed next-generation active control mechanisms. Addressing the challenge of ultra-low latency shock event classification requires utilizing prior information on normal behaviors (i.e., the system under vibrational loading) to identify abnormalities that can be classified as features of a shock event. The purpose of changepoint shock classification is to automatically recognize when a structure of interest behaves differently than expected in some measurable way. In this work, we analyze two different methods for shock classification using changepoint methodologies. We study the use of adaptive cumulative summation and expectation maximization algorithms in this work. Each method presents advantages and disadvantages for different scenarios. This study aims to derive features (streams of time series data) for the changepoint algorithms and revise the changepoint models to be used in real-time robust shock event detection. In this work, a printed circuit board under continuous vibrations before, during, and after a shock event is used to investigate the proposed methodologies. The printed circuit board is monitored with an accelerometer that is used to monitor both the vibrational and shock state of the system. The vibrational response of the system consists of accelerations up to 20 m/s2, while the shock event consists of loadings up to 2,000 m/s2. This work showed that the CUSUM algorithm is fairly effective at identifying the shock state in data but generates many false positives during normal behavior times, with no false positives post-shock, indicating accurate shock state detection despite early errors. In contrast, the Expectation Maximization (EM) algorithm shows improved performance by correctly predicting no shock in the initial phase and accurately identifying the onset of the shock state. It occasionally misclassifies shocked points as normal due to its change point identification process. Compared to CUSUM, EM has fewer false positives before the shock and similar performance during and after the shock event. Future research efforts will focus on developing online versions of these algorithms, which can identify system states with a minimum number of errors. The limitations of the system and its robustness to noise are discussed.  more » « less
Award ID(s):
1937535 2237696 2234921 1956071
PAR ID:
10567991
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8832-2
Format(s):
Medium: X
Location:
Atlanta, Georgia, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Connected vehicle (CV) systems are cognizant of potential cyber attacks because of increasing connectivity between its different components such as vehicles, roadside infrastructure and traffic management centers. However, it is a challenge to detect security threats in real-time and develop appropriate/effective countermeasures for a CV system because of the dynamic behavior of such attacks, high computational power requirement and a historical data requirement for training detection models. To address these challenges, statistical models, especially change point models, have potentials for real-time anomaly detections. Thus, the objective of this study is to investigate the efficacy of two change point models, Expectation Maximization (EM) and two forms of Cumulative Summation (CUSUM) algorithms (i.e., typical and adaptive), for real-time V2I cyber attack detection in a CV Environment. To prove the efficacy of these models, we evaluated these two models for three different type of cyber attack, denial of service (DOS), impersonation, and false information, using basic safety messages (BSMs) generated from CVs through simulation. Results from numerical analysis revealed that EM, CUSUM, and adaptive CUSUM could detect these cyber attacks, DOS, impersonation, and false information, with an accuracy of (99\%, 100\%, 100\%), (98\%, 100\%, 100\%), and (100\%, 98\%, 100\%) respectively. 
    more » « less
  2. Abstract Electronic components that undergo shock and vibration are susceptible to failure caused by damage in the base printed circuit board that makes up the substrate of these systems. In certain applications, it may become paramount to know in real-time if the electronic components are damaged to enable a next-generation active system to take immediate responses. Broad examples of such systems include blast mitigation systems or safety systems in car accidents. These systems on classified under the term “high-rate” as they experience high shock levels on short time scales. This work proposes a long short-term memory neural network to enable real-time damage detection and assessment of electronic assemblies subjected to shock. The long short-term memory neural network is able to infer the state of the structure in approximately 4 milliseconds following the impact. The model obtains perfect classification results at 4 milliseconds for the data used in this work. This work is supported by experimentation that indicates damage to electronic packages can be quantified through the in situ monitoring of the impedance of electrical connections. Changes in impedance correlate to alterations in the physical properties of electronic components which indicate the occurrence of damage. On this basis, a comprehensive dataset is created to monitor the impedance changes of a daisy-chained connection through repeated high-energy shocks. Meanwhile, the shock response of the electronic components is captured using an accelerometer, enabling a detailed analysis of the effects of high-rate shock on the components’ performance. A dataset is developed to encompass 30 repeated impacts experiencing 10,000 gn during impact with an average half-sine time of 322 microseconds. The paper outlines the proposed real-time machine learning framework while performance metrics are presented and discussed in detail. 
    more » « less
  3. Introduces EM‑EDM, an AL framework using expectation‑maximization to model heterogeneous student pedagogical strategies across large continuous state spaces. EM‑EDM outperforms four AL baselines and two DRL policies on two pedagogical action prediction tasks. 
    more » « less
  4. A key challenge in e-learning environments like Intelligent Tutoring Systems (ITSs) is to induce effective pedagogical policies efficiently. While Deep Reinforcement Learning (DRL) often suffers from \textbf{\emph{sample inefficiency}} and \textbf{\emph{reward function}} design difficulty, Apprenticeship Learning (AL) algorithms can overcome them. However, most AL algorithms can not handle heterogeneity as they assume all demonstrations are generated with a homogeneous policy driven by a single reward function. Still, some AL algorithms which consider heterogeneity, often can not generalize to large continuous state space and only work with discrete states. In this paper, we propose an expectation-maximization(EM)-EDM, a general AL framework to induce effective pedagogical policies from given optimal or near-optimal demonstrations, which are assumed to be driven by heterogeneous reward functions. We compare the effectiveness of the policies induced by our proposed EM-EDM against four AL-based baselines and two policies induced by DRL on two different but related tasks that involve pedagogical action prediction. Our overall results showed that, for both tasks, EM-EDM outperforms the four AL baselines across all performance metrics and the two DRL baselines. This suggests that EM-EDM can effectively model complex student pedagogical decision-making processes through the ability to manage a large, continuous state space and adapt to handle diverse and heterogeneous reward functions with very few given demonstrations. 
    more » « less
  5. We develop algorithms to automate discovery of stochastic dynamical system models from noisy, vector-valued time series. By discovery, we mean learning both a nonlinear drift vector field and a diagonal diffusion matrix for an Itô stochastic differential equation in Rd . We parameterize the vector field using tensor products of Hermite polynomials, enabling the model to capture highly nonlinear and/or coupled dynamics. We solve the resulting estimation problem using expectation maximization (EM). This involves two steps. We augment the data via diffusion bridge sampling, with the goal of producing time series observed at a higher frequency than the original data. With this augmented data, the resulting expected log likelihood maximization problem reduces to a least squares problem. We provide an open-source implementation of this algorithm. Through experiments on systems with dimensions one through eight, we show that this EM approach enables accurate estimation for multiple time series with possibly irregular observation times. We study how the EM method performs as a function of the amount of data augmentation, as well as the volume and noisiness of the data. 
    more » « less