skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2244074

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two-photon vapor cell-based optical clocks are strong candidates for next-generation portable atomic standards, offering simplicity, compactness, and high performance. Their narrow clock transitions with counter-propagating beams enable first-order Doppler-free operation. However, systematic perturbations such as the AC Stark shift, temperature-induced shift, and drifts resulting from the laser system pose challenges cause instabilities to medium- to long-term performance. This paper provides a comprehensive overview of Rb two-photon vapor cell optical standards, focusing on the long-term performance-limiting effects and potential mitigation strategies, aiming for clock stabilities better than 1 × 10−15 over the averaging time of a day and beyond. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available April 28, 2026
  3. Free, publicly-accessible full text available March 18, 2026
  4. Free, publicly-accessible full text available February 13, 2026
  5. Free, publicly-accessible full text available January 1, 2026
  6. While over one-third of the U.S. economy and much of our national security infrastructure directly depends on precision timing, there has been to date no educational workforce development program in the US dedicated to training young talent in the timekeeping technologies that underpin our society. The Alabama Collaborative for Contemporary Education in Precision Timing (ACCEPT) Program is a new, 5-year National Research Traineeship program funded by the National Science Foundation, designed to train the next generation of graduate (MS and PhD) degree holders in a field of critical important to our nation. ACCEPT will provide a comprehensive training and educational opportunity for trainees from physics, mathematics, and engineering. Trainees will combine coursework across these three departments with professional development in critical areas identified by precision timing experts (teamwork, leadership, ethics, communication), and put their training into practice via research experiences with ACCEPT partners, student-led initiatives, and networking at conferences and workshops. In this paper, we present the current objectives, vision, and methodology of our new program, initial steps toward building a comprehensive training facility, and initial research and demonstration projects. 
    more » « less
  7. A timescale algorithm demonstrating a clock ensemble utilizing commercial atomic clocks and multiplexing equipment has been established at the University of Alabama to serve as a testbed for research and student training. 
    more » « less