skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2247453

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flexoelectricity offers an energy harvesting alternative to piezoelectric materials. Although flexoelectricity is generally weak in most materials, recent findings show that bending a semiconductor with insulating barrier layers could induce a significantly enhanced flexoelectric response. We call this effect the Space Charge Induced Flexoelectric (SCIF) effect. This study explores the induced polarization resulting from free charge redistribution in a doped silicon beam. To understand the underlying physics, a 3D numerical model combining flexoelectric principles and the drift-diffusion theory of semiconduction was developed. The effective flexoelectric coefficient was computed by comparing the differential charge accumulation at the top and bottom of the beam and compared that with the experimental observations. 
    more » « less
  2. Lead zirconate titanate (PZT) is widely used in energy harvesting because of its excellent material properties. However, as the material contains lead, there are significant environmental concerns with its production and use. Flexoelectricity refers to the coupling between strain gradient and electric polarization that exists, in principle, in all dielectric materials and would allow for energy harvesting without using piezoelectric materials. However, the effect is very weak in most materials. Promisingly, it has recently been shown that space charge polarized materials (i.e., semiconducting materials with insulating barrier layers) can exhibit enhanced flexoelectricity. This space charge induced flexoelectric effect opens up the possibility of a non-toxic replacement for PZT in energy harvesting applications. In this paper we investigate the use of doped silicon with hafnium oxide insulating layers as flexoelectric transducers that could replace PZT in many applications including energy harvesting. Specifically, we experimentally demonstrate flexoelectricity in a bending beam and show an effective flexoelectric coefficient of 4.9 uC/F. Finally, we develop and demonstrate a finite element model for flexoelectricity. 
    more » « less