Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Identifying and understanding various causal relations are fundamental to climate dynamics for improving the predictive capacity of Earth system modeling. In particular, causality in Earth systems has manifest temporal periodicities, like physical climate variabilities. To unravel the characteristic frequency of causality in climate dynamics, we develop a data‐analytic framework based on a combination of causality detection and Hilbert spectral analysis, using a long‐term temperature and precipitation dataset in the contiguous United States. Using the Huang–Hilbert transform, we identify the intrinsic frequencies of cross‐regional causality for precipitation and temperature, ranging from interannual to interdecadal time scales. In addition, we analyze the spectra of the physical climate variabilities, including El Niño‐Southern Oscillation and Pacific Decadal Oscillation. It is found that the intrinsic causal frequencies are positively associated with the physics of the oscillations in the global climate system. The proposed methodology provides fresh insights into the causal connectivity in Earth's hydroclimatic system and its underlying mechanism as regulated by the characteristic low‐frequency variability associated with various climatic dynamics.more » « less
-
Abstract Global climate changes, especially the rise of global mean temperature due to the increased carbon dioxide (CO2) concentration, can, in turn, result in higher anthropogenic and biogenic greenhouse gas emissions. This potentially leads to a positive loop of climate–carbon feedback in the Earth’s climate system, which calls for sustainable environmental strategies that can mitigate both heat and carbon emissions, such as urban greening. In this study, we investigate the impact of urban irrigation over green spaces on ambient temperatures and CO2exchange across major cities in the contiguous United States. Our modeling results indicate that the carbon release from urban ecosystem respiration is reduced by evaporative cooling in humid climate, but promoted in arid/semi-arid regions due to increased soil moisture. The irrigation-induced environmental co-benefit in heat and carbon mitigation is, in general, positively correlated with urban greening fraction and has the potential to help counteract climate–carbon feedback in the built environment.more » « less
-
Abstract Global climate change has been shown to cause longer, more intense, and frequent heatwaves, of which anthropogenic stressors concentrated in urban areas are a critical contributor. In this study, we investigate the causal interactions during heatwaves across 520 urban sites in the U.S. combining complex network and causal analysis. The presence of regional mediators is manifest in the constructed causal networks, together with long-range teleconnections. More importantly, megacities, such as New York City and Chicago, are causally connected with most of other cities and mediate the structure of urban networks during heatwaves. We also identified a significantly positive correlation between the causality strength and the total populations in megacities. These findings corroborate the contribution of human activities e.g., anthropogenic emissions of greenhouse gases or waste heat, to urban heatwaves. The emergence of teleconnections and supernodes are informative for the prediction and adaptation to heatwaves under global climate change.more » « less
-
Abstract Accurately predicting weather and climate in cities is critical for safeguarding human health and strengthening urban resilience. Multimodel evaluations can lead to model improvements; however, there have been no major intercomparisons of urban‐focussed land surface models in over a decade. Here, in Phase 1 of the Urban‐PLUMBER project, we evaluate the ability of 30 land surface models to simulate surface energy fluxes critical to atmospheric meteorological and air quality simulations. We establish minimum and upper performance expectations for participating models using simple information‐limited models as benchmarks. Compared with the last major model intercomparison at the same site, we find broad improvement in the current cohort's predictions of short‐wave radiation, sensible and latent heat fluxes, but little or no improvement in long‐wave radiation and momentum fluxes. Models with a simple urban representation (e.g., ‘slab’ schemes) generally perform well, particularly when combined with sophisticated hydrological/vegetation models. Some mid‐complexity models (e.g., ‘canyon’ schemes) also perform well, indicating efforts to integrate vegetation and hydrology processes have paid dividends. The most complex models that resolve three‐dimensional interactions between buildings in general did not perform as well as other categories. However, these models also tended to have the simplest representations of hydrology and vegetation. Models without any urban representation (i.e., vegetation‐only land surface models) performed poorly for latent heat fluxes, and reasonably for other energy fluxes at this suburban site. Our analysis identified widespread human errors in initial submissions that substantially affected model performances. Although significant efforts are applied to correct these errors, we conclude that human factors are likely to influence results in this (or any) model intercomparison, particularly where participating scientists have varying experience and first languages. These initial results are for one suburban site, and future phases of Urban‐PLUMBER will evaluate models across 20 sites in different urban and regional climate zones.more » « less
-
Free, publicly-accessible full text available April 21, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Urban Land Surface Models (ULSMs) simulate energy and water exchanges between the urban surface and atmosphere. However, earlier systematic ULSM comparison projects assessed the energy balance but ignored the water balance, which is coupled to the energy balance. Here, we analyze the water balance representation in 19 ULSMs participating in the Urban‐PLUMBER project using results for 20 sites spread across a range of climates and urban form characteristics. As observations for most water fluxes are unavailable, we examine the water balance closure, flux timing, and magnitude with a score derived from seven indicators expecting better scoring models to capture the latent heat flux more accurately. We find that the water budget is only closed in 57% of the model‐site combinations assuming closure when annual total incoming fluxes (precipitation and irrigation) fluxes are within 3% of the outgoing (all other) fluxes. Results show the timing is better captured than magnitude. No ULSM has passed all water balance indicators for any site. Models passing more indicators do not capture the latent heat flux more accurately refuting our hypothesis. While output reporting inconsistencies may have negatively affected model performance, our results indicate models could be improved by explicitly verifying water balance closure and revising runoff parameterizations. By expanding ULSM evaluation to the water balance and related to latent heat flux performance, we demonstrate the benefits of evaluating processes with direct feedback mechanisms to the processes of interest.more » « less
-
The Atlantic Meridional Overturning Circulation (AMOC) is a significant component of the global ocean system, which has so far ensured a relatively warm climate for the North Atlantic and mild conditions in regions, such as Western Europe. The AMOC is also critical for the global climate. The complexity of the dynamical system underlying the AMOC is so vast that a long-term assessment of the potential risk of AMOC collapse is extremely challenging. However, short-term prediction can lead to accurate estimates of the dynamical state of the AMOC and possibly to early warning signals for guiding policy making and control strategies toward preventing AMOC collapse in the long term. We develop a model-free, machine-learning framework to predict the AMOC dynamical state in the short term by employing five datasets: MOVE and RAPID (observational), AMOC fingerprint (proxy records), and AMOC simulated fingerprint and CESM AMOC (synthetic). We demonstrate the power of our framework in predicting the variability of the AMOC within the maximum prediction horizon of 12 or 24 months. A number of issues affecting the prediction performance are investigated.more » « less
An official website of the United States government
