skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of 30 urban land surface models in the Urban‐PLUMBER project: Phase 1 results
Abstract Accurately predicting weather and climate in cities is critical for safeguarding human health and strengthening urban resilience. Multimodel evaluations can lead to model improvements; however, there have been no major intercomparisons of urban‐focussed land surface models in over a decade. Here, in Phase 1 of the Urban‐PLUMBER project, we evaluate the ability of 30 land surface models to simulate surface energy fluxes critical to atmospheric meteorological and air quality simulations. We establish minimum and upper performance expectations for participating models using simple information‐limited models as benchmarks. Compared with the last major model intercomparison at the same site, we find broad improvement in the current cohort's predictions of short‐wave radiation, sensible and latent heat fluxes, but little or no improvement in long‐wave radiation and momentum fluxes. Models with a simple urban representation (e.g., ‘slab’ schemes) generally perform well, particularly when combined with sophisticated hydrological/vegetation models. Some mid‐complexity models (e.g., ‘canyon’ schemes) also perform well, indicating efforts to integrate vegetation and hydrology processes have paid dividends. The most complex models that resolve three‐dimensional interactions between buildings in general did not perform as well as other categories. However, these models also tended to have the simplest representations of hydrology and vegetation. Models without any urban representation (i.e., vegetation‐only land surface models) performed poorly for latent heat fluxes, and reasonably for other energy fluxes at this suburban site. Our analysis identified widespread human errors in initial submissions that substantially affected model performances. Although significant efforts are applied to correct these errors, we conclude that human factors are likely to influence results in this (or any) model intercomparison, particularly where participating scientists have varying experience and first languages. These initial results are for one suburban site, and future phases of Urban‐PLUMBER will evaluate models across 20 sites in different urban and regional climate zones.  more » « less
Award ID(s):
2300548
PAR ID:
10583784
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
150
Issue:
758
ISSN:
0035-9009
Page Range / eLocation ID:
126 to 169
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Urban Land Surface Models (ULSMs) simulate energy and water exchanges between the urban surface and atmosphere. However, earlier systematic ULSM comparison projects assessed the energy balance but ignored the water balance, which is coupled to the energy balance. Here, we analyze the water balance representation in 19 ULSMs participating in the Urban‐PLUMBER project using results for 20 sites spread across a range of climates and urban form characteristics. As observations for most water fluxes are unavailable, we examine the water balance closure, flux timing, and magnitude with a score derived from seven indicators expecting better scoring models to capture the latent heat flux more accurately. We find that the water budget is only closed in 57% of the model‐site combinations assuming closure when annual total incoming fluxes (precipitation and irrigation) fluxes are within 3% of the outgoing (all other) fluxes. Results show the timing is better captured than magnitude. No ULSM has passed all water balance indicators for any site. Models passing more indicators do not capture the latent heat flux more accurately refuting our hypothesis. While output reporting inconsistencies may have negatively affected model performance, our results indicate models could be improved by explicitly verifying water balance closure and revising runoff parameterizations. By expanding ULSM evaluation to the water balance and related to latent heat flux performance, we demonstrate the benefits of evaluating processes with direct feedback mechanisms to the processes of interest. 
    more » « less
  2. The atmospheric boundary layer along the coastal-urban transect differs from that of urban or rural regions due to the distinctive interaction between the sea breeze and the urban heat island effect. In this manuscript, we present the observations of the atmospheric boundary layer in the Houston, Texas, area during the Coastal Urban Boundary Layer Experiment (CUBE) from June through September 2022. In order to understand the unique characteristics of the coastal urban boundary layer, we collected mean and turbulence data from micrometeorological towers and ground-based remote sensing instruments installed in the urban, coastal, bay, and rural sections within the greater Houston region. Furthermore, an urbanized weather research and forecast (WRF) model incorporating the Building Effect Parameterization and Building Energy Model (BEP-BEM) scheme is used to recognize the spatial variability of the meteorological conditions in the Houston Metro area. Compared to non-urban sites, the urban site exhibits a higher near-surface temperature throughout the day, with the highest temperature difference occurring at night due to the redistribution of the stored heat as sensible heat. During the dry period in June, we observed comparatively higher sensible heat flux in the urban site, demonstrating the heat island effect and lower latent heat flux due to lack of vegetation. The urban site had higher TKE values throughout the day than other sites because of the uneven roughness of the landscape. One of the unique findings of this study is the shift in spectral characteristics along the coastal-rural-urban transect. The power and co-spectra of zonal and vertical velocities and the vertical heat flux during the convective periods varied significantly across all the sites. The coastal site was influenced mainly by the local bay breeze shifting the peak to higher frequencies. The boundary layer height in the urban site was generally greater than in bay and rural sites due to increased convection in urban areas resulting from anthropogenic modification of land cover and waste heat from air conditioning use. The balance between the urban thermal and mechanical roughness effects was seen during the sea breeze front (SBF) event on the highest heat index day as SBF was triggered and accelerated by UHI. 
    more » « less
  3. null (Ed.)
    Abstract The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program User Facility produces ground-based long-term continuous unique measurements for atmospheric state, precipitation, turbulent fluxes, radiation, aerosol, cloud, and the land surface, which are collected at multiple sites. These comprehensive datasets have been widely used to calibrate climate models and are proven to be invaluable for climate model development and improvement. This article introduces an evaluation package to facilitate the use of ground-based ARM measurements in climate model evaluation. The ARM data-oriented metrics and diagnostics package (ARM-DIAGS) includes both ARM observational datasets and a Python-based analysis toolkit for computation and visualization. The observational datasets are compiled from multiple ARM data products and specifically tailored for use in climate model evaluation. In addition, ARM-DIAGS also includes simulation data from models participating the Coupled Model Intercomparison Project (CMIP), which will allow climate-modeling groups to compare a new, candidate version of their model to existing CMIP models. The analysis toolkit is designed to make the metrics and diagnostics quickly available to the model developers. 
    more » « less
  4. Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types. 
    more » « less
  5. Abstract. The objective of this study was to upscale airborne flux measurements ofsensible heat and latent heat and to develop high-resolution flux maps. Inorder to support the evaluation of coupled atmospheric–land-surface models weinvestigated spatial patterns of energy fluxes in relation to land-surfaceproperties. We used airborne eddy-covariance measurements acquired by the Polar 5research aircraft in June–July 2012 to analyze surface fluxes.Footprint-weighted surface properties were then related to 21 529 sensibleheat flux observations and 25 608 latent heat flux observations using bothremote sensing and modeled data. A boosted regression tree technique wasused to estimate environmental response functions between spatially andtemporally resolved flux observations and corresponding biophysical andmeteorological drivers. In order to improve the spatial coverage and spatialrepresentativeness of energy fluxes we used relationships extracted acrossheterogeneous Arctic landscapes to infer high-resolution surface energy fluxmaps, thus directly upscaling the observational data. These maps of projectedsensible heat and latent heat fluxes were used to assess energy partitioningin northern ecosystems and to determine the dominant energy exchangeprocesses in permafrost areas. This allowed us to estimate energy fluxes forspecific types of land cover, taking into account meteorological conditions.Airborne and modeled fluxes were then compared with measurements from aneddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependentquantification of surface energy fluxes and they provide new insights into theprocesses affecting these fluxes for the main vegetation types inhigh-latitude permafrost areas. 
    more » « less