skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Water Balance Representation in Urban‐PLUMBER Land Surface Models
Urban Land Surface Models (ULSMs) simulate energy and water exchanges between the urban surface and atmosphere. However, earlier systematic ULSM comparison projects assessed the energy balance but ignored the water balance, which is coupled to the energy balance. Here, we analyze the water balance representation in 19 ULSMs participating in the Urban‐PLUMBER project using results for 20 sites spread across a range of climates and urban form characteristics. As observations for most water fluxes are unavailable, we examine the water balance closure, flux timing, and magnitude with a score derived from seven indicators expecting better scoring models to capture the latent heat flux more accurately. We find that the water budget is only closed in 57% of the model‐site combinations assuming closure when annual total incoming fluxes (precipitation and irrigation) fluxes are within 3% of the outgoing (all other) fluxes. Results show the timing is better captured than magnitude. No ULSM has passed all water balance indicators for any site. Models passing more indicators do not capture the latent heat flux more accurately refuting our hypothesis. While output reporting inconsistencies may have negatively affected model performance, our results indicate models could be improved by explicitly verifying water balance closure and revising runoff parameterizations. By expanding ULSM evaluation to the water balance and related to latent heat flux performance, we demonstrate the benefits of evaluating processes with direct feedback mechanisms to the processes of interest.  more » « less
Award ID(s):
2327435 2300548
PAR ID:
10546329
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
Wiley and AGU
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
16
Issue:
10
ISSN:
1942-2466
Page Range / eLocation ID:
e2024MS004231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Top‐down entrainment shapes the vertical gradients of sensible heat, latent heat, and CO2fluxes, influencing the interpretation of eddy covariance (EC) measurements in the unstable atmospheric surface layer (ASL). Using large eddy simulations for convective boundary layer flows, we demonstrate that decreased temperature gradients across the entrainment zone increase entrainment fluxes by enhancing the entrainment velocity, amplifying the asymmetry between top‐down and bottom‐up flux contributions. These changes alter scalar flux profiles, causing flux divergence or convergence and leading to the breakdown of the constant flux layer assumption (CFLA) in the ASL. As a result, EC‐measured fluxes either underestimate or overestimate “true” surface fluxes during divergence or convergence phases, contributing to energy balance non‐closure. The varying degrees of the CFLA breakdown are a fundamental cause for the non‐closure issue. These findings highlight the underappreciated role of entrainment in interpreting EC fluxes, addressing non‐closure, and understanding site‐to‐site variability in flux measurements. 
    more » « less
  2. Single point eddy covariance measurements of the Earth’s surface energy budget frequently identify an imbalance between available energy and turbulent heat fluxes. While this imbalance lacks a definitive explanation, it is nevertheless a persistent finding from single-site measurements; one with implications for atmospheric and ecosystem models. This has led to a push for intensive field campaigns with temporally and spatially distributed sensors to help identify the causes of energy balance non-closure. Here we present results from the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19)—an observational experiment designed to investigate how the Earth’s surface energy budget responds to scales of surface spatial heterogeneity over a forest ecosystem in northern Wisconsin. The campaign was conducted from June–October 2019, measuring eddy covariance (EC) surface energy fluxes using an array of 20 towers and a low-flying aircraft. Across the domain, energy balance residuals were found to be highest during the afternoon, coinciding with the period of surface heterogeneity-driven mesoscale motions. The magnitude of the residual varied across different sites in relation to the vegetation characteristics of each site. Both vegetation height and height variability showed positive relationships with the residual magnitude. During the seasonal transition from latent heat-dominated summer to sensible heat-dominated fall the magnitude of the energy balance residual steadily decreased, but the energy balance ratio remained constant at 0.8. This was due to the different components of the energy balance equation shifting proportionally, suggesting a common cause of non-closure across the two seasons. Additionally, we tested the effectiveness of measuring energy balance using spatial EC. Spatial EC, whereby the covariance is calculated based on deviations from spatial means, has been proposed as a potential way to reduce energy balance residuals by incorporating contributions from mesoscale motions better than single-site, temporal EC. Here we tested several variations of spatial EC with the CHEESEHEAD19 dataset but found little to no improvement to energy balance closure, which we attribute in part to the challenging measurement requirements of spatial EC. 
    more » « less
  3. Abstract The physical processes of heat exchange between lakes and the surrounding atmosphere are important in simulating and predicting terrestrial surface energy balance. Latent and sensible heat fluxes are the dominant physical process controlling ice growth and decay on the lake surface, as well as having influence on regional climate. While one-dimensional lake models have been used in simulating environmental changes in ice dynamics and water temperature, understanding the seasonal to daily cycles of lake surface energy balance and its relationship to lake thermal properties, atmospheric conditions, and how those are represented in models is still an open area of research. We evaluated a pair of one-dimensional lake models, Freshwater Lake (FLake) and the General Lake Model (GLM), to compare modeled latent and sensible heat fluxes against observed data collected by an eddy covariance tower during a 1-yr period in 2017, using Lake Mendota in Madison, Wisconsin, as our study site. We hypothesized transitional periods of ice cover as a leading source of model uncertainty, and we instead found that the models failed to simulate accurate values for large positive heat fluxes that occurred from late August into late December. Our results ultimately showed that one-dimensional models are effective in simulating sensible heat fluxes but are considerably less sensitive to latent heat fluxes than the observed relationships of latent heat flux to environmental drivers. These results can be used to focus future improvement of these lake models especially if they are to be used for surface boundary conditions in regional numerical weather models. Significance Statement While lakes consist of a small amount of Earth’s surface, they have a large impact on local climate and weather. A large amount of energy is stored in lakes during the spring and summer, and then removed from lakes before winter. The effect is particularly noticeable in high latitudes, when the seasonal temperature difference is larger. Modeling this lake energy exchange is important for weather models and measuring this energy exchange is challenging. Here we compare modeled and observed energy exchange, and we show there are large amounts of energy exchange happening in the fall, which models struggle to capture well. During periods of partial ice coverage in early winter, lake behavior can change rapidly. 
    more » « less
  4. Abstract Accurately predicting weather and climate in cities is critical for safeguarding human health and strengthening urban resilience. Multimodel evaluations can lead to model improvements; however, there have been no major intercomparisons of urban‐focussed land surface models in over a decade. Here, in Phase 1 of the Urban‐PLUMBER project, we evaluate the ability of 30 land surface models to simulate surface energy fluxes critical to atmospheric meteorological and air quality simulations. We establish minimum and upper performance expectations for participating models using simple information‐limited models as benchmarks. Compared with the last major model intercomparison at the same site, we find broad improvement in the current cohort's predictions of short‐wave radiation, sensible and latent heat fluxes, but little or no improvement in long‐wave radiation and momentum fluxes. Models with a simple urban representation (e.g., ‘slab’ schemes) generally perform well, particularly when combined with sophisticated hydrological/vegetation models. Some mid‐complexity models (e.g., ‘canyon’ schemes) also perform well, indicating efforts to integrate vegetation and hydrology processes have paid dividends. The most complex models that resolve three‐dimensional interactions between buildings in general did not perform as well as other categories. However, these models also tended to have the simplest representations of hydrology and vegetation. Models without any urban representation (i.e., vegetation‐only land surface models) performed poorly for latent heat fluxes, and reasonably for other energy fluxes at this suburban site. Our analysis identified widespread human errors in initial submissions that substantially affected model performances. Although significant efforts are applied to correct these errors, we conclude that human factors are likely to influence results in this (or any) model intercomparison, particularly where participating scientists have varying experience and first languages. These initial results are for one suburban site, and future phases of Urban‐PLUMBER will evaluate models across 20 sites in different urban and regional climate zones. 
    more » « less
  5. Abstract How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2(Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSHin the ASL decreases linearly with height regardless of soil moisture conditions,LHandFcdecrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH. The non‐closure does not imply thatFcis always underestimated;Fccan be overestimated over dry soils despite the non‐closure issue. 
    more » « less