Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Software projects frequently use automation tools to perform repetitive activities in the distributed software development process. Recently, GitHub introducedGitHub Actions, a feature providing automated workflows for software projects. Understanding and anticipating the effects of adopting such technology is important for planning and management. Our research investigates how projects useGitHub Actions, what the developers discuss about them, and how project activity indicators change after their adoption. Our results indicate that 1,489 out of 5,000 most popular repositories (almost 30% of our sample) adoptGitHub Actionsand that developers frequently ask for help implementing them. Our findings also suggest that the adoption ofGitHub Actionsleads to more rejections of pull requests (PRs), more communication in accepted PRs and less communication in rejected PRs, fewer commits in accepted PRs and more commits in rejected PRs, and more time to accept a PR. We found similar results when segmenting our results by categories ofGitHub Actions. We suggest practitioners consider these effects when adoptingGitHub Actionson their projects.more » « less
-
Free, publicly-accessible full text available April 28, 2026
-
Generative AI (genAI) tools, such as ChatGPT or Copilot, are advertised to improve developer productivity and are being integrated into software development. However, misaligned trust, skepticism, and usability concerns can impede the adoption of such tools. Research also indicates that AI can be exclusionary, failing to support diverse users adequately. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in perspectives and interaction styles. When an individual's cognitive style is unsupported, it creates barriers to technology adoption. Therefore, to understand how to effectively integrate genAI tools into software development, it is first important to model what factors affect developers' trust and intentions to adopt genAI tools in practice? We developed a theoretically grounded statistical model to (1) identify factors that influence developers' trust in genAI tools and (2) examine the relationship between developers' trust, cognitive styles, and their intentions to use these tools in their work. We surveyed software developers (N=238) at two major global tech organizations: GitHub Inc. and Microsoft; and employed Partial Least Squares-Structural Equation Modeling (PLS-SEM) to evaluate our model. Our findings reveal that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust in these tools. Furthermore, developers' trust and cognitive styles influence their intentions to use these tools in their work. We offer practical suggestions for designing genAI tools for effective use and inclusive user experience.more » « lessFree, publicly-accessible full text available April 28, 2026
-
Artificial intelligence (AI), including large language models and generative AI, is emerging as a significant force in software development, offering developers powerful tools that span the entire development lifecycle. Although software engineering research has extensively studied AI tools in software development, the specific types of interactions between developers and these AI-powered tools have only recently begun to receive attention. Understanding and improving these interactions has the potential to enhance productivity, trust, and efficiency in AI-driven workflows. In this paper, we propose a taxonomy of interaction types between developers and AI tools, identifying eleven distinct interaction types, such as auto-complete code suggestions, command-driven actions, and conversational assistance. Building on this taxonomy, we outline a research agenda focused on optimizing AI interactions, improving developer control, and addressing trust and usability challenges in AI-assisted development. By establishing a structured foundation for studying developer-AI interactions, this paper aims to stimulate research on creating more effective, adaptive AI tools for software development.more » « lessFree, publicly-accessible full text available April 28, 2026
-
Great Power Brings Great Responsibility: Personalizing Conversational AI for Diverse Problem-SolversNewcomers onboarding to Open Source Software (OSS) projects face many challenges. Large Language Models (LLMs), like ChatGPT, have emerged as potential resources for answering questions and providing guidance, with many developers now turning to ChatGPT over traditional Q&A sites like Stack Overflow. Nonetheless, LLMs may carry biases in presenting information, which can be especially impactful for newcomers whose problem-solving styles may not be broadly represented. This raises important questions about the accessibility of AI-driven support for newcomers to OSS projects. This vision paper outlines the potential of adapting AI responses to various problem-solving styles to avoid privileging a particular subgroup. We discuss the potential of AI persona-based prompt engineering as a strategy for interacting with AI. This study invites further research to refine AI-based tools to better support contributions to OSS projects.more » « lessFree, publicly-accessible full text available April 28, 2026
-
Generative AI (genAI) tools (e.g., ChatGPT, Copilot) have become ubiquitous in software engineering (SE). As SE educators, it behooves us to understand the consequences of genAI usage among SE students and to create a holistic view of where these tools can be successfully used. Through 16 reflective interviews with SE students, we explored their academic experiences of using genAI tools to complement SE learning and implementations. We uncover the contexts where these tools are helpful and where they pose challenges, along with examining why these challenges arise and how they impact students. We validated our findings through member checking and triangulation with instructors. Our findings provide practical considerations of where and why genAI should (not) be used in the context of supporting SE students.more » « lessFree, publicly-accessible full text available April 28, 2026
-
Generative AI (genAI) tools, such as ChatGPT or Copilot, are advertised to improve developer productivity and are being integrated into software development. However, misaligned trust, skepticism, and usability concerns can impede the adoption of such tools. Research also indicates that AI can be exclusionary, failing to support diverse users adequately. One such aspect of diversity is cognitive diversity -- variations in users' cognitive styles -- that leads to divergence in perspectives and interaction styles. When an individual's cognitive style is unsupported, it creates barriers to technology adoption. Therefore, to understand how to effectively integrate genAI tools into software development, it is first important to model what factors affect developers' trust and intentions to adopt genAI tools in practice? We developed a theoretically grounded statistical model to (1) identify factors that influence developers' trust in genAI tools and (2) examine the relationship between developers' trust, cognitive styles, and their intentions to use these tools in their work. We surveyed software developers (N=238) at two major global tech organizations: GitHub Inc. and Microsoft; and employed Partial Least Squares-Structural Equation Modeling (PLS-SEM) to evaluate our model. Our findings reveal that genAI's system/output quality, functional value, and goal maintenance significantly influence developers' trust in these tools. Furthermore, developers' trust and cognitive styles influence their intentions to use these tools in their work. We offer practical suggestions for designing genAI tools for effective use and inclusive user experience.more » « lessFree, publicly-accessible full text available April 28, 2026
-
Free, publicly-accessible full text available July 10, 2025
-
Research within sociotechnical domains, such as Software Engineering, fundamentally requires the human perspective. Nevertheless, traditional qualitative data collection methods suffer from difficulties in participant recruitment, scaling, and labor intensity. This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI), especially large language models (LLMs) like ChatGPT and multimodal foundation models. We explore the potential of AI-generated synthetic text as an alternative source of qualitative data, discussing how LLMs can replicate human responses and behaviors in research settings. We discuss AI applications in emulating humans in interviews, focus groups, surveys, observational studies, and user evaluations. We discuss open problems and research opportunities to implement this vision. In the future, an integrated approach where both AI and human-generated data coexist will likely yield the most effective outcomes.more » « less