Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ramanan, Kavita (Ed.)The paper concerns the stochastic approximation recursion, \[ \theta_{n+1}= \theta_n + \alpha_{n + 1} f(\theta_n, \Phi_{n+1}) \,,\quad n\ge 0, \] where the {\em estimates} $$\{ \theta_n\} $$ evolve on $$\Re^d$$, and $$\bfPhi \eqdef \{ \Phi_n \}$$ is a stochastic process on a general state space, satisfying a conditional Markov property that allows for parameter-dependent noise. In addition to standard Lipschitz assumptions and conditions on the vanishing step-size sequence, it is assumed that the associated \textit{mean flow} $$ \ddt \odestate_t = \barf(\odestate_t)$$ is globally asymptotically stable, with stationary point denoted $$\theta^*$$. The main results are established under additional conditions on the mean flow and an extension of the Donsker-Varadhan Lyapunov drift condition known as~(DV3): (i) A Lyapunov function is constructed for the joint process $$\{\theta_n,\Phi_n\}$$ that implies convergence of the estimates in $$L_4$$. (ii) A functional central limit theorem (CLT) is established, as well as the usual one-dimensional CLT for the normalized error. Moment bounds combined with the CLT imply convergence of the normalized covariance $$\Expect [ z_n z_n^\transpose ]$$ to the asymptotic covariance $$\SigmaTheta$$ in the CLT, where $$z_n\eqdef (\theta_n-\theta^*)/\sqrt{\alpha_n}$$. (iii) The CLT holds for the normalized averaged parameters $$\zPR_n\eqdef \sqrt{n} (\thetaPR_n -\theta^*)$$, with $$\thetaPR_n \eqdef n^{-1} \sum_{k=1}^n\theta_k$$, subject to standard assumptions on the step-size. Moreover, the covariance of $$\zPR_n$$ converges to $$\SigmaPR$$, the minimal covariance of Polyak and Ruppert. (iv) An example is given where $$f$$ and $$\barf$$ are linear in $$\theta$$, and $$\bfPhi$$ is a geometrically ergodic Markov chain but does not satisfy~(DV3). While the algorithm is convergent, the second moment of $$\theta_n$$ is unbounded and in fact diverges.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available February 28, 2026
-
Free, publicly-accessible full text available December 16, 2025
-
Free, publicly-accessible full text available December 16, 2025
-
Astolfi, Alessandro (Ed.)Q-learning has become an important part of the reinforcement learning toolkit since its introduction in the dissertation of Chris Watkins in the 1980s. In the original tabular formulation, the goal is to compute exactly a solution to the discounted-cost optimality equation, and thereby obtain the optimal policy for a Markov Decision Process. The goal today is more modest: obtain an approximate solution within a prescribed function class. The standard algorithms are based on the same architecture as formulated in the 1980s, with the goal of finding a value function approximation that solves the so-called projected Bellman equation. While reinforcement learning has been an active research area for over four decades, there is little theory providing conditions for convergence of these Q-learning algorithms, or even existence of a solution to this equation. The purpose of this paper is to show that a solution to the projected Bellman equation does exist, provided the function class is linear and the input used for training is a form of epsilon-greedy policy with sufficiently small epsilon. Moreover, under these conditions it is shown that the Q-learning algorithm is stable, in terms of bounded parameter estimates. Convergence remains one of many open topics for research.more » « less
An official website of the United States government

Full Text Available