skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2306109

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 15, 2026
  2. In this paper, we present the design and implementation of a cyber-physical security testbed for networked electric drive systems, aimed at conducting real-world security demonstrations. To our knowledge, this is one of the first security testbeds for networked electric drives, seamlessly integrating the domains of power electronics and computer science, and cybersecurity. By doing so, the testbed offers a comprehensive platform to explore and understand the intricate and often complex interactions between cyber and physical systems. The core of our testbed consists of four electric machine drives, meticulously configured to emulate small-scale but realistic information technology (IT) and operational technology (OT) networks. This setup both provides a controlled environment for simulating a wide array of cyber attacks, and mirrors potential real-world attack scenarios with a high degree of fidelity. The testbed serves as an invaluable resource for the study of cyber-physical security, offering a practical and dynamic platform for testing and validating cybersecurity measures in the context of networked electric drive systems. As a concrete example of the testbed’s capabilities, we have developed and implemented a Python-based script designed to execute step-stone attacks over a wireless local area network (WLAN). This script leverages a sequence of target IP addresses, simulating a real-world attack vector that could be exploited by adversaries. To counteract such threats, we demonstrate the efficacy of our developed cyber-attack detection algorithms, which are integral to our testbed’s security framework. Furthermore, the testbed incorporates a real-time visualization system using InfluxDB and Grafana, providing a dynamic and interactive representation of networked electric drives and their associated security monitoring mechanisms. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Facial Recognition Systems (FRS) have become one of the most viable biometric identity authentication approaches in supervised and unsupervised applications. However, FRSs are known to be vulnerable to adversarial attacks such as identity theft and presentation attacks. The master face dictionary attacks (MFDA) leveraging multiple enrolled face templates have posed a notable threat to FRS. Federated learning-based FRS deployed on edge or mobile devices are particularly vulnerable to MFDA due to the absence of robust MF detectors. To mitigate the MFDA risks, we propose a trustworthy authentication system against visual MFDA (Trauma). Trauma leverages the analysis of specular highlights on diverse facial components and physiological characteristics inherent to human faces, exploiting the inability of existing MFDAs to replicate reflective elements accurately. We have developed a feature extractor network that employs a lightweight and low-latency vision transformer architecture to discern inconsistencies among specular highlights and physiological features in facial imagery. Extensive experimentation has been conducted to assess Trauma’s efficacy, utilizing public GAN-face detection datasets and mobile devices. Empirical findings demonstrate that Trauma achieves high detection accuracy, ranging from 97.83% to 99.56%, coupled with rapid detection speeds (less than 11 ms on mobile devices), even when confronted with state-of-the-art MFDA techniques. 
    more » « less
    Free, publicly-accessible full text available October 27, 2025
  4. In automated sleep monitoring systems, bed occupancy detection is the foundation or the first step before other downstream tasks, such as inferring sleep activities and vital signs. The existing methods do not generalize well to real-world environments due to single environment settings and rely on threshold-based approaches. Manually selecting thresholds requires observing a large amount of data and may not yield optimal results. In contrast, acquiring extensive labeled sensory data poses significant challenges regarding cost and time. Hence, developing models capable of generalizing across diverse environments with limited data is imperative. This paper introduces SeismoDot, which consists of a self-supervised learning module and a spectral-temporal feature fusion module for bed occupancy detection. Unlike conventional methods that require separate pre-training and fine-tuning, our self-supervised learning module is co-optimized with the primary target task, which directs learned representations toward a task-relevant embedding space while expanding the feature space. The proposed feature fusion module enables the simultaneous exploitation of temporal and spectral features, enhancing the diversity of information from both domains. By combining these techniques, SeismoDot expands the diversity of embedding space for both the temporal and spectral domains to enhance its generalizability across different environments. SeismoDot not only achieves high accuracy (98.49%) and F1 scores (98.08%) across 13 diverse environments, but it also maintains high performance (97.01% accuracy and 96.54% F1 score) even when trained with just 20% (4 days) of the total data. This demonstrates its exceptional ability to generalize across various environmental settings, even with limited data availability. 
    more » « less
    Free, publicly-accessible full text available August 22, 2025
  5. Free, publicly-accessible full text available July 21, 2025
  6. In this study, we introduce BedDot, the first contact-free and bed-mounted continuous blood pressure monitoring sensor. Equipped with a seismic sensor, BedDot eliminates the need for external wearable devices and physical contact, while avoiding privacy or radiation concerns associated with other technologies such as cameras or radars. Using advanced preprocessing techniques and innovative AI algorithms, we extract time-series features from the collected bedseismogram signals and accurately estimate blood pressure with remarkable stability and robustness. Our user-friendly prototype has been tested with over 75 participants, demonstrating exceptional performance that meets all three major industry standards, which are the Association for the Advancement of Medical Instrumentation (AAMI) and Food and Drug Administration (FDA), and outperforms current state-of-the-art deep learning models for time series analysis. As a non-invasive solution for monitoring blood pressure during sleep and assessing cardiovascular health, BedDot holds immense potential for revolutionizing the field. 
    more » « less