Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available May 18, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Starting from Kirchhoff-Huygens representation and Duhamel's principle of time-domain wave equations, we propose novel butterfly-compressed Hadamard integrators for self-adjoint wave equations in both time and frequency domain in an inhomogeneous medium. First, we incorporate the leading term of Hadamard's ansatz into the Kirchhoff-Huygens representation to develop a short-time valid propagator. Second, using Fourier transform in time, we derive the corresponding Eulerian short-time propagator in the frequency domain; on top of this propagator, we further develop a time-frequency-time (TFT) method for the Cauchy problem of time-domain wave equations. Third, we further propose a time-frequency-time-frequency (TFTF) method for the corresponding point-source Helmholtz equation, which provides Green's functions of the Helmholtz equation for all angular frequencies within a given frequency band. Fourth, to implement the TFT and TFTF methods efficiently, we introduce butterfly algorithms to compress oscillatory integral kernels at different frequencies. As a result, the proposed methods can construct wave field beyond caustics implicitly and advance spatially overturning waves in time naturally with quasi-optimal computational complexity and memory usage. Furthermore, once constructed the Hadamard integrators can be employed to solve both time-domain wave equations with various initial conditions and frequency-domain wave equations with different point sources. Numerical examples for two-dimensional wave equations illustrate the accuracy and efficiency of the proposed methods.more » « less
An official website of the United States government

Full Text Available