Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
This paper addresses the challenge of constructing finite element curl div complexes in three dimensions. Tangential-normal continuity is introduced in order to develop distributional finite element curl div complexes. The spaces constructed are applied to discretize the quad curl problem, demonstrating optimal order of convergence. Furthermore, a hybridization technique is proposed, demonstrating its equivalence to nonconforming finite elements and weak Galerkin methods.more » « lessFree, publicly-accessible full text available June 30, 2026
-
It has been extensively studied in the literature that solving Maxwell equations is very sensitive to mesh structures, space conformity and solution regularity. Roughly speaking, for almost all the methods in the literature, optimal convergence for low-regularity solutions heavily relies on conforming spaces and highly regular simplicial meshes. This can be a significant limitation for many popular methods based on broken spaces and non-conforming or polytopal meshes often used for inhomogeneous media, as the discontinuity of electromagnetic parameters can lead to quite low regularity of solutions near media interfaces. This very issue can be potentially worsened by geometric singularities, making those methods particularly challenging to apply. In this paper, we present a lowest-order virtual element method for solving an indefinite time-harmonic Maxwell equation in 2D inhomogeneous media with quite arbitrary polytopal meshes, and the media interface is allowed to have geometric singularity to cause low regularity. We employ the “virtual mesh” technique originally invented in [S. Cao, L. Chen and R. Guo, A virtual finite element method for two-dimensional Maxwell interface problems with a background unfitted mesh, Math. Models Methods Appl. Sci. 31 (2021) 2907–2936] for error analysis. This work admits three key novelties: (i) the proposed method is theoretically guaranteed to achieve robust optimal convergence for solutions with merely [Formula: see text] regularity, [Formula: see text]; (ii) the polytopal element shape can be highly anisotropic and shrinking, and an explicit formula is established to describe the relationship between the shape regularity and solution regularity; (iii) we show that the stabilization term is needed to produce optimal convergent solutions for indefinite problems. Extensive numerical experiments will be given to demonstrate the effectiveness of the proposed method.more » « lessFree, publicly-accessible full text available May 20, 2026
-
In the field of solving partial differential equations (PDEs), Hilbert complexes have become highly significant. Recent advances focus on creating new complexes using the Bernstein-Gelfand-Gelfand (BGG) framework, as shown by Arnold and Hu [Found. Comput. Math. 21 (2021), pp. 1739–1774]. This paper extends their approach to three-dimensional finite element complexes. The finite element Hessian, elasticity, and divdiv complexes are systematically derived by applying techniques such as smooth finite element de Rham complexes, the - decomposition, and trace complexes, along with related two-dimensional finite element analogs. The construction includes two reduction operations and one augmentation operation to address continuity differences in the BGG diagram, ultimately resulting in a comprehensive and effective framework for constructing finite element complexes, which have various applications in PDE solving.more » « lessFree, publicly-accessible full text available February 28, 2026
-
The heavy-ball momentum method accelerates gradient descent with a momentum term but lacks accelerated convergence for general smooth strongly convex problems. This work introduces the Accelerated Over-Relaxation Heavy-Ball (AOR-HB) method, the first variant with provable global and accelerated convergence for such problems. AOR-HB closes a long-standing theoretical gap, extends to composite convex optimization and min-max problems, and achieves optimal complexity bounds. It offers three key advantages: (1) broad generalization ability, (2) potential to reshape acceleration techniques, and (3) conceptual clarity and elegance compared to existing methods.more » « lessFree, publicly-accessible full text available January 22, 2026
-
A unified construction of H(div)-conforming finite element tensors, including vector element, symmetric matrix element, traceless matrix element, and, in general, tensors with linear constraints, is developed in this work. It is based on the geometric decomposition of Lagrange elements into bubble functions on each sub-simplex. Each tensor at a sub-simplex is further decomposed into tangential and normal components. The tangential component forms the bubble function space, while the normal component characterizes the trace. Some degrees of freedom can be redistributed to (n-1)-dimensional faces. The developed finite element spaces are H(div)-conforming and satisfy the discrete inf-sup condition. Intrinsic bases of the constraint tensor space are also established.more » « less
An official website of the United States government
