skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 30, 2026

Title: Distributional Finite Element curl div Complexes and Application to Quad Curl Problems
This paper addresses the challenge of constructing finite element curl div complexes in three dimensions. Tangential-normal continuity is introduced in order to develop distributional finite element curl div complexes. The spaces constructed are applied to discretize the quad curl problem, demonstrating optimal order of convergence. Furthermore, a hybridization technique is proposed, demonstrating its equivalence to nonconforming finite elements and weak Galerkin methods.  more » « less
Award ID(s):
2309777 2309785
PAR ID:
10594594
Author(s) / Creator(s):
; ;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
SIAM Journal on Numerical Analysis
Volume:
63
Issue:
3
ISSN:
0036-1429
Page Range / eLocation ID:
1078 to 1104
Subject(s) / Keyword(s):
distributional curl div finite element complex quad curl problem error analysis hybridization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Finite element de Rham complexes and finite element Stokes complexes with varying degrees of smoothness in three dimensions are systematically constructed in this paper. Smooth scalar finite elements in three dimensions are derived through a non-overlapping decomposition of the simplicial lattice. H(div)-conforming finite elements and H(curl)-conforming finite elements with varying degrees of smoothness are devised based on these smooth scalar finite elements. The finite element de Rham complexes with corresponding smoothness and commutative diagrams are induced by these elements. The div stability of the H(div)-conforming finite elements is established, and the exactness of these finite element complexes is proven. 
    more » « less
  2. Finite element spaces on a tetrahedron are constructed for div div -conforming symmetric tensors in three dimensions. The key tools of the con- struction are the decomposition of polynomial tensor spaces and the charac- terization of the trace operators. First, the div div Hilbert complex and its corresponding polynomial complexes are presented. Several decompositions of polynomial vector and tensor spaces are derived from the polynomial com- plexes. Second, traces for the divdiv operator are characterized through a Green’s identity. Besides the normal-normal component, another trace involving combination of first order derivatives of the tensor is continuous across the face. Due to the smoothness of polynomials, the symmetric tensor element is also continuous at vertices, and on the plane orthogonal to each edge. Besides, a finite element for sym curl-conforming trace-free tensors is constructed following the same approach. Putting all together, a finite element div div complex, as well as the bubble functions complex, in three dimensions is established. 
    more » « less
  3. The discontinuous Galerkin approximation of the grad-div and curl-curl problems formulated in conservative first-order form is investigated. It is shown that the approximation is spectrally correct, thereby confirming numerical observations made by various authors in the literature. This result hinges on the existence of discrete involutions which are formulated as discrete orthogonality properties. The involutions are crucial to establish discrete versions of weak Poincar´e–Steklov inequalities that hold true at the continuous level. 
    more » « less
  4. A finite element elasticity complex on tetrahedral meshes and the corresponding commutative diagram are devised. The H 1 H^1 conforming finite element is the finite element developed by Neilan for the velocity field in a discrete Stokes complex. The symmetric div-conforming finite element is the Hu-Zhang element for stress tensors. The construction of an H ( inc ) H(\operatorname {inc}) -conforming finite element of minimum polynomial degree 6 6 for symmetric tensors is the focus of this paper. Our construction appears to be the first H ( inc ) H(\operatorname {inc}) -conforming finite elements on tetrahedral meshes without further splitting. The key tools of the construction are the decomposition of polynomial tensor spaces and the characterization of the trace of the inc \operatorname {inc} operator. The polynomial elasticity complex and Koszul elasticity complex are created to derive the decomposition. The trace of the inc \operatorname {inc} operator is induced from a Green’s identity. Trace complexes and bubble complexes are also derived to facilitate the construction. Two-dimensional smooth finite element Hessian complex and div ⁡ div \operatorname {div}\operatorname {div} complex are constructed. 
    more » « less
  5. Numerical integration of the stiffness matrix in higher-order finite element (FE) methods is recognized as one of the heaviest computational tasks in an FE solver. The problem becomes even more relevant when computing the Gram matrix in the algorithm of the Discontinuous Petrov Galerkin (DPG) FE methodology. Making use of 3D tensor-product shape functions, and the concept of sum factorization, known from standard high-order FE and spectral methods, here we take advantage of this idea for the entire exact sequence of FE spaces defined on the hexahedron. The key piece to the presented algorithms is the exact sequence for the one-dimensional element, and use of hierarchical shape functions. Consistent with existing results, the presented algorithms for the integration of H1, H(curl), H(div), and L2 inner products, have the O(p7) computational complexity in contrast to the O(p9) cost of conventional integration routines. Use of Legendre polynomials for shape functions is critical in this implementation. Three boundary value problems under different variational formulations, requiring combinations of H1, H(div) and H(curl) test shape functions, were chosen to experimentally assess the computation time for constructing DPG element matrices, showing good correspondence with the expected rates. 
    more » « less