Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 20, 2026
- 
            Free, publicly-accessible full text available July 16, 2026
- 
            Free, publicly-accessible full text available June 29, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available December 13, 2025
- 
            Free, publicly-accessible full text available December 11, 2025
- 
            This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors. Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by powerful graph neural networks (GNNs). However, predicting interacting dynamics in challenging scenarios such as out-of-distribution shift and complicated underlying rules remains unsolved. In this paper, we propose a new approach named Prototypical Graph ODE (PGODE) to address the problem. The core of PGODE is to incorporate prototype decomposition from contextual knowledge into a continuous graph ODE framework. Specifically, PGODE employs representation disentanglement and system parameters to extract both object-level and system-level contexts from historical trajectories, which allows us to explicitly model their independent influence and thus enhances the generalization capability under system changes. Then, we integrate these disentangled latent representations into a graph ODE model, which determines a combination of various interacting prototypes for enhanced model expressivity. The entire model is optimized using an end-to-end variational inference framework to maximize the likelihood. Extensive experiments in both in-distribution and out-of-distribution settings validate the superiority of PGODE compared to various baselines.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available