While research on mentoring has been extensive, research on tiered peer mentoring is limited, particularly at regional comprehensive institutions like ours, where the majority of the students are from populations that are underrepresented in STEM fields. Here, we describe and report preliminary results from our NSF-funded conceptual model "Flight School,” a model that utilizes a tiered peer-mentor structure, allowing students and mentors to engage directly with their learning experience, provide feedback, and make real-time adjustments to their learning process. The tiered structure includes a Pilot (faculty member), one Co-Pilot (peer-mentor), and three Navigators (peer-mentors) in a class. Peer mentors and faculty are trained in community building, communication, lesson planning, and concepts from educational and cognitive psychology. During the semester, faculty and peer-mentor feedback about students’ learning is used to accomplish real-time adjustments in the classroom. We evaluate the effectiveness of Flight School using multiple measures, including curriculum inventories, questionnaires about mentoring, belonging, and motivation, as well as DFW rates. Results from the Flight School model in Anatomy and Physiology and Introductory Biology courses over two semesters showed an increase in learning gains, sense of belonging, engagement with faculty, gains in mentoring skills, and reductions in DFW rates. Anecdotal evidence indicates that peer mentors increased their content knowledge and leadership skills, and had a more enjoyable class. Faculty in Flight School also reported a more satisfying experience facilitating learning experiences. We think that Flight School can emerge as a mechanism to increase minority representation in STEM jobs and careers because it empowers students to advocate for their learning and provides equitable education in groups that have been historically oppressed.
more »
« less
This content will become publicly available on March 19, 2026
"Are You Stronger Than a Lemur?" An effective, interactive STEM outreach program for increasing anatomical and biomechanical knowledge across diverse populations
Abstract Access to high‐quality outreach programs is crucial for preparing students for STEM careers, yet traditional classrooms often lack diverse, hands‐on learning opportunities, particularly in anatomy and evolutionary biology. We present Are You Stronger Than a Lemur?—an interactive STEM activity that introduces K‐12 students to fundamental concepts in anatomy, evolution, physics, and data analysis through real‐world applications. Participants formulate hypotheses, collect and analyze data, and engage with age‐tailored educational materials that support differentiated learning. We assessed the program's effectiveness through pre‐ and post‐program knowledge assessments across 1670 participants (1045 eligible responses) from the United States and Mongolia. Results showed a significant increase in knowledge acquisition in anatomy, evolution, physics, statistics, and zoology. After controlling for confounding variables, we also observed a significant increase in interest in STEM careers. Are You Stronger Than a Lemur? bridges gaps in STEM education, particularly in underrepresented fields like anatomy and evolutionary biology, by providing an adaptable program suited to different age groups, genders, and countries. Its success lies in connecting theoretical concepts to tangible data, fostering critical thinking, problem‐solving, and data interpretation skills. The program not only reinforces core STEM concepts but also offers students a unique, engaging experience that deepens their understanding and enhances their potential for future STEM careers.
more »
« less
- Award ID(s):
- 2314898
- PAR ID:
- 10617902
- Publisher / Repository:
- Anatomical Sciences Education
- Date Published:
- Journal Name:
- Anatomical Sciences Education
- ISSN:
- 1935-9772
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT As educators, we should not assume that students are progressing toward intended STEM careers simply because they have persisted and received a STEM degree. In addition to learning biology content and scientific skills, students need guidance in making optimal career choices. In this study, we present seven career development modules designed specifically to motivate students to consider their successes as scientists and to consider applying their biological knowledge and scientific skills to a range of biology careers. These modules highlight the value and the utility of a biology degree and are, therefore, designed to increase students’ self-confidence as well as their science and biology identities. The career development modules presented here are easy to implement and, in our experience, encourage engagement and class discussions. Our analyses confirm that these modules collectively increase student science and biology identities, two predictors for entry into STEM careers.more » « less
-
Challenge or problem-based learning help students develop deeper content understanding and enhanced STEM skillsets and provide opportunities for learning across multiple contexts. Educational interventions that include active learning, mentoring, and role modeling are particularly important in recruiting and retaining female and minority students in STEM. With this framework in mind, we implemented the Vertically-Integrated Projects (VIP) model at a public urban research university in the 2022-2023 academic year with the goal of helping participating students increase engineering and STEM identity and other psychosocial outcomes. This paper reports the results from the first year of our VIP program. At the beginning and end of the academic year, participants completed measures of engineering identity; engineering self-efficacy; engineering mindset; intention to remain in the engineering major; intention to have a career in engineering; and STEM professional identity. Wilcoxon Signed Ranks (N=10) tests showed no statistically significant differences on any of these measures. Participants also responded to 20 items assessing their perceptions of their level of knowledge and skills in a variety of areas relevant to their experience in the VIP program. Wilcoxon Signed Ranks tests (N=10) revealed some statistically significant differences between pre- and post-test. Specifically, students tended to see themselves as having greater knowledge or skills in planning a long-term project, communicating technical concepts and designs to others, designing systems, components, or processes to meet practical or applied needs, understanding computer hardware and systems, working on a multidisciplinary team, and making ethical decisions in engineering/research. Finally, at the end of the Spring semester, participants rated the extent to which they perceived the VIP program helped them to develop their skills on the same 20 items. Most participants believed the VIP program helped them to develop each skill either somewhat or a great deal. Overall, while participation in the VIP program did not influence student engineering identity, self-efficacy, mindset, or major/career intentions, it was associated with increased self-perceived abilities on six specific skills. Additionally, most participants agreed that the VIP program helped them develop 20 skills at least “somewhat.”more » « less
-
There is significant and growing interest in manufacturing; this is particularly true with respect to advanced manufacturing. Advanced manufacturing typically refers to the use of new technologies to make products that have high value or significant value added through the production process. One of the main impediments advanced manufacturing companies cite is the lack of a skilled workforce. This is the result of both a lack of technical skills, but also due to outdated and incorrect perceptions about manufacturing. Manufacturing is incorrectly perceived as low-skilled, dirty, and low paying. The reality is that a significant portion of manufacturing jobs require advanced technological knowledge and are done in state of the art facilities. One of the more effective ways to increase knowledge about science, technology, engineering, and math (STEM) careers is to increase the knowledge of teachers. As part of a National Science Foundation Advanced Technological Education project, a group of high school teachers was offered the opportunity to work in advanced manufacturing labs with engineering faculty. These projects included additive manufacturing (AM) of ceramics, surface characterization of AM metal parts, and surface alteration. The teachers were tasked with developing lesson plans which incorporated the advanced manufacturing concepts that they had learned. As part of the assessment of the program, teachers were given pre- and post- research experience surveys regarding their perceptions of manufacturing and their views of STEM topics in general; the later data were collected using the validated T-STEM instrument. External evaluation also provided feedback on the usefulness of various program activities. Overall participants found their laboratory research and research facility tours extremely useful. They felt that the program enhanced their excitement about STEM and their laboratory skills. Participants also showed significant increases in their post program technology teaching efficacy, student technology use, and STEM career awareness. In addition to empirical results, project descriptions and program details are also be presented.more » « less
-
The purpose of this research full paper is to examine the development of undergraduate students’ research identity during a summer undergraduate research experience. Identity development through socialization experiences is crucial for students to explore future career paths, especially in careers that require research-focused graduate degrees. However, literature is limited on how effective socialization occurs for research and future research-related careers. This paper follows 10 undergraduate engineering and physics students participating in an engineering-focused Research Experiences for Undergraduates (REU) program at an R1 institution to explore this gap in knowledge. As part of a longitudinal multi-method study, participants completed a pre- and post-experience survey, and participated in three interviews over the course of the summer. Survey data were analyzed using descriptive statistics and a Wilcoxon signed-rank test. Interviews were analyzed through the lens of academic self-concept theory for common themes of socialization and identity development in research through the course of the program. Findings indicate that undergraduate students’ research self-concepts are heavily influenced by research experiences and comparisons to their peers. The students’ increase in research self-concept as well as their experiences and interactions within the program allowed them to see research careers as attainable and increased their interest in pursuing graduate degrees after the program. Survey data showed a statistical increase in research self-efficacy and research identity at the end of the program, reinforcing the idea that students’ experiences in the REU helped them grow as researchers and engineers. This research increases our understanding of students’ research identity development and provides potential ways to implement research self-concept and identity development to similar undergraduate research experiences.more » « less
An official website of the United States government
