skip to main content

Search for: All records

Award ID contains: 2317471

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    High‐quality‐factor microring resonators are highly desirable in many applications. Fabricating a microring resonator typically requires delicate instruments to ensure a smooth side wall of waveguides and 100‐nm critical feature size in the coupling region. In this work, a new method “damascene soft nanoimprinting lithography” is demonstrated that can create high‐fidelity waveguide by simply backfilling an imprinted cladding template with a high refractive index polymer core. This method can easily realize high Q‐factor polymer microring resonators (e.g., ≈5 × 105around 770 nm wavelength) without the use of any expensive instruments and can be conducted in a normal lab environment. The high Q‐factors can be attributed to the residual layer‐free feature and controllable meniscus cross‐section profile of the filled polymer core. Furthermore, the new method is compatible with different polymers, yields low fabrication defects, enables new functionalities, and allows flexible substrate. These benefits can broaden the applicability of the fabricated microring resonator.

    more » « less
  2. Abstract

    Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications. In the past decade, the state-of-the-art systems have reached a point where the signal-to-noise ratio per unit acquisition time is fundamentally limited by shot noise from vacuum fluctuations. To address the issue, we propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance. To analyze the performance of real systems, we develop a quantum model of dual-comb spectroscopy that takes practical noises into consideration. Based on this model, we propose quantum combs with side-band entanglement around each comb lines to suppress the shot noise in heterodyne detection. Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications. Furthermore, the quantum comb can be engineered using nonlinear optics and promises near-term experimentation.

    more » « less
  3. Free, publicly-accessible full text available March 1, 2025
  4. Entanglement is a quintessential quantum mechanical phenomenon with no classical equivalent. First discussed by Einstein, Podolsky, and Rosen and formally introduced by Schrödinger in 1935, entanglement has grown from a scientific debate to a radically new resource that sparks a technological revolution. This review focuses on fundamentals and recent advances in entanglement-based quantum information technology (QIT), specifically in photonic systems. Photons are unique quantum information carriers with several advantages, such as their ability to operate at room temperature, their compatibility with existing communication and sensing infrastructures, and the availability of readily accessible optical components. Photons also interface well with other solid-state quantum platforms. We first provide an overview on entanglement, starting with an introduction to its development from a historical perspective followed by the theory for entanglement generation and the associated representative experiments. We then dive into the applications of entanglement-based QIT for sensing, imaging, spectroscopy, data processing, and communication. Before closing, we present an outlook for the architecture of the next-generation entanglement-based QIT and its prospective applications.

    more » « less
    Free, publicly-accessible full text available January 1, 2025
  5. Free, publicly-accessible full text available December 1, 2024
  6. This folder contains original data, data processing code, and demo code for the paper entitled "Quantum receiver enhanced by adaptive learning" published in Light: Science & Applications, DOI: 10.1038/s41377-022-01039-5. Please contact if you have questions or other concerns. 

    more » « less