skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2319441

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present an analysis searching for dual active galactic nuclei (AGN) among 62 high-redshift (2.5 <z< 3.5) X-ray sources selected from the X-UDS, AEGIS-XD, CDF-S, and COSMOS-Legacy Chandra surveys. We aim to quantify the frequency of dual AGN in the high-redshift Universe, which holds implications for black hole merger timescales and low-frequency gravitational wave detection rates. We analyze each X-ray source using BAYMAX, an analysis tool that calculates the Bayes factor for whether a given archival Chandra AGN is more likely a single or dual point source. We find no strong evidence for dual AGN in any individual source in our sample. We increase our sensitivity to search for dual AGN across the sample by comparing our measured distribution of Bayes factors to that expected from a sample composed entirely of single point sources and find no evidence for dual AGN in the sample distribution. Although our analysis utilizes one of the largest Chandra catalogs of high-zX-ray point sources available to study, the findings remain limited by the modest number of sources observed at the highest spatial resolution with Chandra and the typical count rates of the detected sources. Our nondetection allows us to place an upper limit on the X-ray dual AGN fraction at 2.5 <z< 3.5 of 4.8% at the 95% confidence level. Expanding substantially on these results at X-ray wavelengths will require future surveys spanning larger sky areas and extending to fainter fluxes than has been possible with Chandra. We illustrate the potential of the AXIS mission concept in this regard. 
    more » « less
  2. ABSTRACT We explore the eccentricity measurement threshold of Laser Interferometer Space Antenna (LISA) for gravitational waves radiated by massive black hole binaries (MBHBs) with redshifted BH masses Mz in the range 104.5–107.5 M⊙ at redshift z = 1. The eccentricity can be an important tracer of the environment where MBHBs evolve to reach the merger phase. To consider LISA’s motion and apply the time delay interferometry, we employ the lisabeta software and produce year-long eccentric waveforms using the inspiral-only post-Newtonian model taylorf2ecc. We study the minimum measurable eccentricity (emin, defined one year before the merger) analytically by computing matches and Fisher matrices, and numerically via Bayesian inference by varying both intrinsic and extrinsic parameters. We find that emin strongly depends on Mz and weakly on mass ratio and extrinsic parameters. Match-based signal-to-noise ratio criterion suggest that LISA will be able to detect emin ∼ 10−2.5 for lighter systems (Mz ≲ 105.5 M⊙) and ∼10−1.5 for heavier MBHBs with a 90 per cent confidence. Bayesian inference with Fisher initialization and a zero noise realization pushes this limit to emin ∼ 10−2.75 for lower-mass binaries, assuming a <50 per cent relative error. Bayesian inference can recover injected eccentricities of 0.1 and 10−2.75 for a 105 M⊙ system with an ∼10−2 per cent and an ∼10 per cent relative errors, respectively. Stringent Bayesian odds criterion ($$\ln {\mathcal {B}}\gt 8$$) provides nearly the same inference. Both analytical and numerical methodologies provide almost consistent results for our systems of interest. LISA will launch in a decade, making this study valuable and timely for unlocking the mysteries of the MBHB evolution. 
    more » « less
  3. Abstract To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here. 
    more » « less
  4. GW190521, the most massive binary black hole merger confidently detected by the LIGO-Virgo- KAGRA Collaboration, is the first gravitational-wave observation of an intermediate-mass black hole. The signal was followed approximately 34 days later by flare ZTF19abanrhr, detected in AGN J124942.3 þ 344929 by the Zwicky Transient Facility at the 78% spatial contour for GW190521’s sky localization. Using the GWTC-2.1 data release, we find that the association between GW190521 and flare ZTF19abanrhr as its electromagnetic counterpart is preferred over a random coincidence of the two transients with a log Bayes’ factor of 8.6, corresponding to an odds ratio of ∼5400∶1 for equal prior odds and ∼400∶1 assuming an astrophysical prior odds of 1=13. Given the association, the multimessenger signal allows for an estimation of the Hubble constant, finding H0 ¼ 102þ27 −25 km s−1 Mpc−1 when solely analyzing GW190521 and 79.2þ17.6 −9.6 km s−1 Mpc−1 assuming prior information from the binary neutron star merger GW170817, both consistent with the existing literature. 
    more » « less