Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The preponderance of intrinsically disordered proteins (IDPs) in the eukaryotic proteome, and their ability to interact with each other, and with folded proteins, RNA, and DNA for functional purposes, have made it important to quantitatively characterize their biophysical properties. Toward this end, we developed the transferable self‐organized polymer (SOP‐IDP) model to calculate the properties of several IDPs. The values of the radius of gyration () obtained from SOP‐IDP simulations are in excellent agreement (correlation coefficient of 0.96) with those estimated from SAXS experiments. For AP180 and Epsin, the predicted values of the hydrodynamic radii () are in nearly quantitative agreement with those from fluorescence correlation spectroscopy (FCS) experiments. Strikingly, the calculated SAXS profiles for 36 IDPs are also nearly superimposable on the experimental profiles. The dependence of and the mean end‐to‐end distance () on chain length, , follows Flory's scaling law, ( and ), suggesting that globally IDPs behave as synthetic polymers in a good solvent. This finding depends on the solvent quality, which can be altered by changing variables such as pH and salt concentration. The values of and are 0.20 and 0.48 nm, respectively. Surprisingly, finite size corrections to scaling, expected on theoretical grounds, are negligible for and . In contrast, only by accounting for the finite sizes of the IDPs, the dependence of experimentally measurable on can be quantitatively explained using . Although Flory scaling law captures the estimates for , , and accurately, the spread of the simulated data around the theoretical curve is suggestive of of sequence‐specific features that emerge through a fine‐grained analysis of the conformational ensembles using hierarchical clustering. Typically, the ensemble of conformations partitions into three distinct clusters, having different equilibrium populations and structural properties. Without any further readjustments to the parameters of the SOP‐IDP model, we also obtained nearly quantitative agreement with paramagnetic relaxation enhancement (PRE) measurements forα‐synuclein. The transferable SOP‐IDP model sets the stage for several applications, including the study of phase separation in IDPs and interactions with nucleic acids.more » « less
- 
            Abstract Folding of ribozymes into well-defined tertiary structures usually requires divalent cations. How Mg2+ ions direct the folding kinetics has been a long-standing unsolved problem because experiments cannot detect the positions and dynamics of ions. To address this problem, we used molecular simulations to dissect the folding kinetics of the Azoarcus ribozyme by monitoring the path each molecule takes to reach the folded state. We quantitatively establish that Mg2+ binding to specific sites, coupled with counter-ion release of monovalent cations, stimulate the formation of secondary and tertiary structures, leading to diverse pathways that include direct rapid folding and trapping in misfolded structures. In some molecules, key tertiary structural elements form when Mg2+ ions bind to specific RNA sites at the earliest stages of the folding, leading to specific collapse and rapid folding. In others, the formation of non-native base pairs, whose rearrangement is needed to reach the folded state, is the rate-limiting step. Escape from energetic traps, driven by thermal fluctuations, occurs readily. In contrast, the transition to the native state from long-lived topologically trapped native-like metastable states is extremely slow. Specific collapse and formation of energetically or topologically frustrated states occur early in the assembly process.more » « less
- 
            Free, publicly-accessible full text available May 21, 2026
- 
            The Random First-Order Transition (RFOT) theory predicts that transport proceeds by the cooperative movement of particles in domains, whose sizes increase as a liquid is compressed above a characteristic volume fraction, ϕd. The rounded dynamical transition around ϕd, which signals a crossover to activated transport, is accompanied by a growing correlation length that is predicted to diverge at the thermodynamic glass transition density (>ϕd). Simulations and imaging experiments probed the single particle dynamics of mobile particles in response to pinning all the particles in a semi-infinite space or randomly pinning (RP) a fraction of particles in a liquid at equilibrium. The extracted dynamic length increases non-monotonically with a peak around ϕd, which not only depends on the pinning method but is also different from ϕd of the actual liquid. This finding is at variance with the results obtained using the small wavelength limit of a four-point structure factor for unpinned systems. To obtain a consistent picture of the growth of the dynamic length, one that is impervious to the use of RP, we introduce a multiparticle structure factor, Smpc(q,t), that probes collective dynamics. The collective dynamical length, calculated from the small wave vector limit of Smpc(q,t), increases monotonically as a function of the volume fraction in a glass-forming binary mixture of charged colloidal particles in both unpinned and pinned systems. This prediction, which also holds in the presence of added monovalent salt, may be validated using imaging experiments.more » « lessFree, publicly-accessible full text available February 7, 2026
- 
            Free, publicly-accessible full text available January 7, 2026
- 
            Understanding the biophysical basis of protein aggregation is important in biology because of the potential link to several misfolding diseases. Although experiments have shown that protein aggregates adopt a variety of morphologies, the dynamics of their formation are less well characterized. Here, we introduce a minimal model to explore the dependence of the aggregation dynamics on the structural and sequence features of the monomers. Using simulations, we demonstrate that sequence complexity (codified in terms of word entropy) and monomer rigidity profoundly influence the dynamics and morphology of the aggregates. Flexible monomers with low sequence complexity (corresponding to repeat sequences) form liquid-like droplets that exhibit ergodic behavior. Strikingly, these aggregates abruptly transition to more ordered structures, reminiscent of amyloid fibrils, when the monomer rigidity is increased. In contrast, aggregates resulting from monomers with high sequence complexity are amorphous and display nonergodic glassy dynamics. The heterogeneous dynamics of the low and high-complexity sequences follow stretched exponential kinetics, which is one of the characteristics of glassy dynamics. Importantly, at nonzero values of the bending rigidities, the aggregates age with the relaxation times that increase with the waiting time. Informed by these findings, we provide insights into aging dynamics in protein condensates and contrast the behavior with the dynamics expected in RNA repeat sequences. Our findings underscore the influence of the monomer characteristics in shaping the morphology and dynamics of protein aggregates, thus providing a foundation for deciphering the general rules governing the behavior of protein condensates.more » « less
- 
            Repeat RNA sequences self-associate to form condensates. Simulations of a coarse-grained single-interaction site model for (CAG)n (n = 30 and 31) show that the salt-dependent free energy gap, ΔGS, between the ground (perfect hairpin) and the excited state (slipped hairpin (SH) with one CAG overhang) of the monomer for (n even) is the primary factor that determines the rates and yield of self-assembly. For odd n, the free energy (GS) of the ground state, which is an SH, is used to predict the self-association kinetics. As the monovalent salt concentration, CS, increases, ΔGS and GS increase, which decreases the rates of dimer formation. In contrast, ΔGS for shuffled sequences, with the same length and sequence composition as (CAG)31, is larger, which suppresses their propensities to aggregate. Although demonstrated explicitly for (CAG) polymers, the finding of inverse correlation between the free energy gap and RNA aggregation is general.more » « less
- 
            Compartment formation in interphase chromosomes is a result of spatial segregation between euchromatin and heterochromatin on a few megabase pairs (Mbp) scale. On the sub-Mbp scales, topologically associating domains (TADs) appear as interacting domains along the diagonal in the ensemble averaged Hi-C contact map. Hi-C experiments showed that most of the TADs vanish upon deleting cohesin, while the compartment structure is maintained, and perhaps even enhanced. However, closer inspection of the data reveals that a non-negligible fraction of TADs is preserved (P-TADs) after cohesin loss. Imaging experiments show that, at the single-cell level, TAD-like structures are presenteven without cohesin. To provide a structural basis for these findings, we first used polymer simulations to show that certain TADs with epigenetic switches across their boundaries survive after depletion of loops. More importantly, the three-dimensional structures show that many of the P-TADs have sharp physical boundaries. Informed by the simulations, we analyzed the Hi-C maps (with and without cohesin) in mouse liver and human colorectal carcinoma cell lines, which affirmed that epigenetic switches and physical boundaries (calculated using the predicted 3D structures using the data-driven HIPPS method that uses Hi-C as the input) explain the origin of the P-TADs. Single-cell structures display TAD-like features in the absence of cohesin that are remarkably similar to the findings in imaging experiments. Some P-TADs, with physical boundaries, are relevant to the retention of enhancer–promoter/promoter–promoter interactions. Overall, our study shows that preservation of a subset of TADs upon removing cohesin is a robust phenomenon that is valid across multiple cell lines.more » « less
- 
            DNA−protein interactions are pervasive in a number of biophysical processes ranging from transcription and gene expression to chromosome folding. To describe the structural and dynamic properties underlying these processes accurately, it is important to create transferable computational models. Toward this end, we introduce Coarse-grained Force Field for Energy Estimation, COFFEE, a robust framework for simulating DNA− protein complexes. To brew COFFEE, we integrated the energy function in the self-organized polymer model with side-chains for proteins and the three interaction site model for DNA in a modular fashion, without recalibrating any of the parameters in the original force-fields. A unique feature of COFFEE is that it describes sequence−specific DNA−protein interactions using a statistical potential (SP) derived from a data set of high-resolution crystal structures. The only parameter in COFFEE is the strength (λDNAPRO) of the DNA−protein contact potential. For an optimal choice of λDNAPRO, the crystallographic B-factors for DNA−protein complexes with varying sizes and topologies are quantitatively reproduced. Without any further readjustments to the force-field parameters, COFFEE predicts scattering profiles that are in quantitative agreement with small-angle X-ray scattering experiments, as well as chemical shifts that are consistent with NMR. We also show that COFFEE accurately describes the salt-induced unraveling of nucleosomes. Strikingly, our nucleosome simulations explain the destabilization effect of ARG to LYS mutations, which do not alter the balance of electrostatic interactions but affect chemical interactions in subtle ways. The range of applications attests to the transferability of COFFEE, and we anticipate that it would be a promising framework for simulating DNA−protein complexes at the molecular length-scale.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
