This paper studies a tensor factor model that augments samples from multiple classes. The nuisance common patterns shared across classes are characterised by pervasive noises, and the patterns that distinguish different classes are represented by class‐specific components. Additionally, the pervasive component is modelled by the production of a low‐rank tensor latent factor and several factor loading matrices. This augmented tensor factor model can be expanded to a series of matrix variate tensor factor models and estimated using principal component analysis. The ranks of latent factors are estimated using a modified eigen‐ratio method. The proposed estimators have fast convergence rates and enjoy the blessing of dimensionality. The proposed factor model is applied to address the challenge of overlapping issues in image classification through a factor adjustment procedure. The procedure is shown to be powerful through synthetic experiments and an application to COVID‐19 pneumonia diagnosis from frontal chest X‐ray images.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
00000050000
- More
- Availability
-
14
- Author / Contributor
- Filter by Author / Creator
-
-
Song, Wenzhan (4)
-
Ke, Yuan (3)
-
Li, Bingnan (2)
-
Ye, Jin (2)
-
Cui, Bai (1)
-
Hu, Kun (1)
-
Li, Qi (1)
-
Li, Xiaochuan (1)
-
Liu, Jianzhe (1)
-
Luo, Dan (1)
-
Phillips, Bradley G (1)
-
Song, Yingjian (1)
-
Sriram, TN (1)
-
Xie, Zaipeng (1)
-
da_Silva, Murilo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available September 1, 2025 -
Song, Yingjian ; Li, Bingnan ; Luo, Dan ; Xie, Zaipeng ; Phillips, Bradley G ; Ke, Yuan ; Song, Wenzhan ( , IEEE Internet of Things Journal)Free, publicly-accessible full text available March 1, 2025
-
Hu, Kun ; Ye, Jin ; Song, Wenzhan ( , IEEE Transactions on Industrial Informatics)Free, publicly-accessible full text available January 1, 2025
-
Li, Qi ; Liu, Jianzhe ; Cui, Bai ; Song, Wenzhan ; Ye, Jin ( , IEEE Transactions on Smart Grid)Free, publicly-accessible full text available January 1, 2025
-
da_Silva, Murilo ; Sriram, TN ; Ke, Yuan ( , Computational Statistics & Data Analysis)