skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2328241

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Optical spectrometers are essential tools for analysing light‒matter interactions, but conventional spectrometers can be complicated and bulky. Recently, efforts have been made to develop miniaturized spectrometers. However, it is challenging to overcome the trade-off between miniaturizing size and retaining performance. Here, we present a complementary metal oxide semiconductor image sensor-based miniature computational spectrometer using a plasmonic nanoparticles-in-cavity microfilter array. Size-controlled silver nanoparticles are directly printed into cavity-length-varying Fabry‒Pérot microcavities, which leverage strong coupling between the localized surface plasmon resonance of the silver nanoparticles and the Fabry‒Pérot microcavity to regulate the transmission spectra and realize large-scale arrayed spectrum-disparate microfilters. Supported by a machine learning-based training process, the miniature computational spectrometer uses artificial intelligence and was demonstrated to measure visible-light spectra at subnanometre resolution. The high scalability of the technological approaches shown here may facilitate the development of high-performance miniature optical spectrometers for extensive applications. 
    more » « less
  2. Abstract Lattice thermal conductivity is important for many applications, but experimental measurements or first principles calculations including three-phonon and four-phonon scattering are expensive or even unaffordable. Machine learning approaches that can achieve similar accuracy have been a long-standing open question. Despite recent progress, machine learning models using structural information as descriptors fall short of experimental or first principles accuracy. This study presents a machine learning approach that predicts phonon scattering rates and thermal conductivity with experimental and first principles accuracy. The success of our approach is enabled by mitigating computational challenges associated with the high skewness of phonon scattering rates and their complex contributions to the total thermal resistance. Transfer learning between different orders of phonon scattering can further improve the model performance. Our surrogates offer up to two orders of magnitude acceleration compared to first principles calculations and would enable large-scale thermal transport informatics. 
    more » « less
  3. Stiff dynamics continue to pose challenges for power system dynamic state estimation. In particular, models of inverters with control schemes designed to support grid voltage and frequency, namely, grid-forming inverters (GFMs), are highly prone to numerical instability. This paper develops a novel analytical modeling technique derived from two cascading subsystems, namely synchronization and dq-frame voltage control. This allows us to obtain a closed-form discrete-time state-space model based on the matrix exponential function. The resulting model enables a numerically stable and decentralized dynamic state estimator that can track the dynamics of GFMs at standard synchrophasor reporting rates. In contrast, existing dynamic state estimators are subject to numerical issues. The proposed algorithm is tested on a 14-bus power system with a GFM and compared with the standard algorithm whose process model is discretized using well-known Runge-Kutta methods. Numerical results demonstrate the superiority of the proposed method under various conditions. 
    more » « less
    Free, publicly-accessible full text available December 23, 2026
  4. We propose a reformulation of the streaming dynamic mode decomposition method that requires maintaining a single orthonormal basis, thereby reducing computational redundancy. The proposed efficient streaming dynamic mode decomposition method results in a constant-factor reduction in computational complexity and memory storage requirements. Numerical experiments on representative canonical dynamical systems show that the enhanced computational efficiency does not compromise the accuracy of the proposed method. 
    more » « less
    Free, publicly-accessible full text available October 15, 2026
  5. The stiff dynamic model of grid-forming inverters (GFMs) presents numerical challenges in time discretization for real-time simulation, estimation, and control. To address this challenge, this paper proposes modeling GFMs as two cascading subsystems: a reference-frame-synchronization system and an in-reference-frame system. This paper demonstrates that these two subsystems are approximately linear, allowing their time discretization to be derived in closed form using the matrix exponential. The proposed discretization method is tested on the IEEE 14-bus power system with a GFM connected and compared with second- and fourth-order Runge-Kutta methods. The numerical results validate the proposed method and demonstrate its potential for discretization with longer step sizes. 
    more » « less
    Free, publicly-accessible full text available July 27, 2026
  6. As power systems evolve with the increasing integration of renewable energy sources and smart grid technologies, there is a growing demand for flexible and scalable modeling approaches capable of capturing the complex dynamics of modern grids. This review focuses on symbolic regression, a powerful methodology for deriving parsimonious and interpretable mathematical models directly from data. Symbolic regression is particularly valuable for power systems due to its ability to uncover governing equations without prior structural assumptions, enabling transparent and data-driven insights into nonlinear system behavior. The paper presents a comprehensive overview of symbolic regression methods, including sparse identification of nonlinear dynamics, automatic regression for governing equations, and deep symbolic regression, highlighting their applications in power systems. Through comparative case studies of the single machine infinite bus system, grid-following, and grid-forming inverters, we analyze the strengths, limitations, and suitability of each symbolic regression method in modeling nonlinear power system dynamics. Additionally, we identify critical research gaps and discuss future directions for leveraging symbolic regression in the optimization, control, and operation of modern power grids. This review aims to provide a valuable resource for researchers and engineers seeking innovative, data-driven solutions for modeling in the context of evolving power system infrastructure. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  7. We devise a novel formulation and propose the concept of modal participation factors to nonlinear dynamical systems. The original definition of modal participation factors (or simply participation factors) provides a simple yet effective metric. It finds use in theory and practice, quantifying the interplay between states and modes of oscillation in a linear time-invariant (LTI) system. In this paper, with the Koopman operator framework, we present the results of participation factors for nonlinear dynamical systems with an asymptotically stable equilibrium point or limit cycle. We show that participation factors are defined for the entire domain of attraction, beyond the vicinity of an attractor, where the original definition of participation factors for LTI systems is a special case. Finally, we develop a numerical method to estimate participation factors using time series data from the underlying nonlinear dynamical system. The numerical method can be implemented by leveraging a well-established numerical scheme in the Koopman operator framework called dynamic mode decomposition. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  8. Li, Yingzhen; Mandt, Stephan; Agrawal, Shipra; Khan, Emtiyaz (Ed.)
    Network Markov Decision Processes (MDPs), which are the de-facto model for multi-agent control, pose a significant challenge to efficient learning caused by the exponential growth of the global state-action space with the number of agents. In this work, utilizing the exponential decay property of network dynamics, we first derive scalable spectral local representations for multiagent reinforcement learning in network MDPs, which induces a network linear subspace for the local $$Q$$-function of each agent. Building on these local spectral representations, we design a scalable algorithmic framework for multiagent reinforcement learning in continuous state-action network MDPs, and provide end-to-end guarantees for the convergence of our algorithm. Empirically, we validate the effectiveness of our scalable representation-based approach on two benchmark problems, and demonstrate the advantages of our approach over generic function approximation approaches to representing the local $$Q$$-functions. 
    more » « less
    Free, publicly-accessible full text available May 3, 2026
  9. Free, publicly-accessible full text available March 16, 2026
  10. Free, publicly-accessible full text available March 16, 2026